Skip to main content
Log in

Formation kinetics and transition mechanism of CaO·SiO2 in low-calcium system during high-temperature sintering

CaO·SiO2 在低钙高温烧结过程的生成动力学与转变机制

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The crystal structure, formation kinetics and micro-morphology of CaO·SiO2 during high-temperature sintering process were studied in low-calcium system by XRD, FT-IR, Raman and SEM-EDS methods. When the molar ratio of CaCO3 to SiO2 is 1.0, β-2CaO·SiO2 forms firstly during the heating process, and then CaO·SiO2 is generated by the transformation reaction of pre-formed 2CaO·SiO2 with SiO2. 3CaO·SiO2 and 3CaO·2SiO2 do not form either in the heating or sintering process. Rising the sintering temperature and prolonging the holding time promote the phase transition of 2CaO·SiO2 to CaO·SiO2, resulting in the sintered products a small blue shift and broadening in Raman spectra. The content of CS can reach 97.4% when sintered at 1400 °C for 1 h. The formation kinetics of CaO·SiO2 follows the second-order chemical reaction model, and the corresponding apparent activation energy and pre-exponential factor are 505.82 kJ/mol and 2.16×1014 s−1 respectively.

摘要

利用XRD、FT-IR、Raman、SEM-EDS 等方法研究了CaO·SiO2 在低钙高温烧结过程的晶体 结构、生成动力学和微观组织。当反应物CaCO3 和SiO2 摩尔比为1.0 时, 加热过程中优先生成 2CaO·SiO2, 然后2CaO·SiO2 进一步与SiO2 反应生成CaO·SiO2; 烧结过程中不会生成3CaO·2SiO2 和 3CaO·SiO2。升高反应温度和延长保温时间有助于2CaO·SiO2 向CaO·SiO2 转化, 并使烧结产物的拉曼 光谱特征峰发生一定的蓝移和宽化。在1400 °C 烧结1 h 时CaO·SiO2 在烧结产物的含量能够达到 97.4%。CaO·SiO2 的生成动力学遵循二级化学反应模型, 相应的反应表观活化能和指前因子分别为 505.82 kJ/mol 和2.16×1014s−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LONG L H, CHEN L D, BAI S Q, CHANG J, LIN K L. Preparation of dense beta-CaSiO3 ceramic with high mechanical strength and HAp formation ability in simulated body fluid [J]. Journal of the European Ceramic Society, 2006, 26(9): 1701–1706. DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.03.247.

    Article  Google Scholar 

  2. DAI B, ZHU H K, ZHOU H Q, YUE Z X. Sintering, crystallization and dielectric properties of CaO-B2O3-SiO2 system glass ceramics [J]. Journal Central South University, 2012, 19(8): 2101–2106. DOI: https://doi.org/10.1007/s11771-012-1251-7.

    Article  Google Scholar 

  3. CHEN Z, ZHAI J, WANG D, CHEN C Z. Bioactivity of hydroxyapatite/wollastonite composite films deposited by pulsed laser [J]. Ceramics International, 2018, 44(9): 10204–10209. DOI: https://doi.org/10.1016/j.ceramint.2018.03.013.

    Article  Google Scholar 

  4. SHIRAZI F S, MOGHADDAM E, MEHRALI M, OSHKOUR M M, METSELAAR H S C, KADRI N A, ZANDI K, ABU N A. In vitro characterization and mechanical properties of β-calcium silicate/POC composite as a bone fixation device [J]. Journal of Biomedical Materials Research Part A, 2014, 102(11): 3973–3985. DOI: https://doi.org/10.1002/jbm.a.35074.

    Article  Google Scholar 

  5. YAACOB M M, KAMARUDDIN N, MAZLAN N A, NORAMAT N F, ALSAEDI M A, AMAN A. Dielectric properties of polyvinyl chloride with wollastonite filler for the application of high-voltage outdoor insulation material [J]. Arabian Journal for Science and Engineering, 2014, 39(5): 3999–4012. DOI: https://doi.org/10.1007/s13369-014-0996-8.

    Article  Google Scholar 

  6. LIANG J Z, LI B, RUAN J Q. Crystallization properties and thermal stability of polypropylene composites filled with wollastonite [J]. Polymer Testing, 2015, 42(4): 185–191. DOI: https://doi.org/10.1016/j.polymertesting.2015.01.017.

    Article  Google Scholar 

  7. WANG H P, ZHANG Q L, YANG H, SUN H P. Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol-gel process [J]. Ceramics International, 2008, 34(4): 1405–1408. DOI: https://doi.org/10.1016/j.ceramint.2007.05.001.

    Article  Google Scholar 

  8. LAPČÍK L, MAŇAS D, LAPČÍKOVÁ B, MARTIN V, Michal S, KLÁRA Č, JAKUB V, KRISTIAN W, RICHARD G, NEIL R. Effect of filler particle shape on plastic-elastic mechanical behavior of high density poly(ethylene)/mica and poly(ethylene)/wollastonite composites [J]. Composites Part B: Engineering, 2018, 141(5): 92–99. DOI: https://doi.org/10.1016/j.compositesb.2017.12.035.

    Article  Google Scholar 

  9. LONG L H, CHEN L D, CHANG J. Low temperature fabrication and characterizations of β-CaSiO3 ceramics [J]. Ceramics International, 2006, 32(4): 457–460. DOI: https://doi.org/10.1016/j.ceramint.2005.03.023.

    Article  Google Scholar 

  10. CAO Z, CAO Y D, ZHANG J S, SUN B, LI X L. Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes [J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(8): 892–900. DOI: https://doi.org/10.1007/s12613-0.15-1147-2.

    Article  Google Scholar 

  11. ARLYUK B I. Study of an effect of a nepheline raw material composition on process parameters of alumina production by the sintering methods [J]. Light Metals, 1994: 59–66.

  12. ABOUZEID A Z M. Primary crushing plant design [J]. International Journal of Mineral Processing, 1979, 6(2): 169–170. DOI: https://doi.org/10.1016/0301-7516(79)90024-3.

    Article  Google Scholar 

  13. LIU G H, LI X B, PENG Z H, ZHOU Q S. Stability of calcium silicate in basic solution [J]. Transactions of Nonferrous Metals Society of China, 2003, 13(5): 1235–1238. DOI: https://doi.org/10.1003/6326(2003)05-1235-04.

    Google Scholar 

  14. PAN X L, ZHANG D, WU Y, YU H Y. Synthesis and characterization of calcium aluminate compounds from gehlenite by high-temperature solid-state reaction [J]. Ceramics International, 2018, 44(12): 13544–13550. DOI: https://doi.org/10.1016/j.ceramint.2018.04.186.

    Article  Google Scholar 

  15. LI X B, LU W J, PENG Z H, LIU G H, ZHOU Q S. Researches on the sinter of calcium silicate and its digestion properties in alkaline solutions [J]. Mining and Metallurgical Engineering, 2005, 25(1): 47–49. (in Chinese)

    Google Scholar 

  16. ZHANG D, HU S S, SUN H L, ZHANG W, WANG B. Mineral transition of high-temperature sintering confirmed in CaAl2O4-Ca2SiO4 non-equilibrium binary system [J]. Construction and Building Materials, 2020, 234: 117402. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117402.

    Article  Google Scholar 

  17. MYSEN B O, VIRGO D, SCARFE C M. Relations between the anionic structure and viscosity of silicate melt-a Raman spectroscopic study [J]. American Mineralogist, 1980, 65(8): 690–710. DOI: https://doi.org/10.0000/PMID15469.

    Google Scholar 

  18. LI L, WENTZCOVITCH R M, WEIDNER D J, SILVA C R S D. Vibrational and thermodynamic properties of forsterite at mantle conditions [J]. Journal of Geophysical Research Atmospheres, 2007, 5(9): 1–8. DOI: https://doi.org/10.1029/2007JB005532.

    Google Scholar 

  19. SWAMY V, DUBROVINSKY L S, F. TUTTI F. High-temperature Raman spectra and thermal expansion of wollastonite [J]. Journal of the American Ceramic Society, 1997, 80(9): 2237–2247. DOI: https://doi.org/10.1111/J.1151-2916.1997.tb03113.x.

    Article  Google Scholar 

  20. FRADE J R. Reexamination of the basic theoretical model or the kinetics of solid-state reactions [J]. Journal of the American Ceramic Society, 1992, 75(7): 1949–1957. DOI: https://doi.org/10.1111/j.1151-2916.1992.tb07222.x.

    Article  Google Scholar 

  21. STRASZKO J, OLSZAKHUMIENIK M, MOZEJKO J. Kinetics of thermal-decomposition of solids [J]. Inzynieria Chemiczna I Procesowa, 1995, 16(1): 45–61. DOI: https://doi.org/10.1007/BF01131049.

    Google Scholar 

  22. ZUO Z L, YU Q B, LUO S Y, ZHANG J K, ZHOU E Z. Effects of CaO on two-step reduction characteristics of copper slag using biochar as reducer: thermodynamic and kinetics [J]. Energy & Fuels, 2020, 34(1): 491–500. DOI: https://doi.org/10.1021/acs.energyfuels.9b03274.

    Article  Google Scholar 

  23. YU H Y, PAN X L, TIAN Y P, TU G F. Mineral transition and formation mechanism of calcium aluminate compounds in CaO-Al2O3-Na2O system during high-temperature sintering [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(7): 924–932. DOI: https://doi.org/10.1007/s12613-019-1951-1.

    Article  Google Scholar 

  24. URBANOVICI E, POPESCU C, SEGAL E. Improved iterative version of the Coats-Redfern method to evaluate non-isothermal kinetic parameters [J]. Journal of Thermal Analysis and Calorimetry, 1999, 58(3): 683–700. DOI: https://doi.org/10.1023/A:1010125132669.

    Article  Google Scholar 

  25. TAZUDDIN, AIYER H N, CHATTERJEE A. Phase equilibria studies of CaO-SiO2-Al2O3-Fe2O3-MgO system using CALPHAD [J]. Calphad, 2018, 60(5): 116–125. DOI: https://doi.org/10.1016/j.calphad.2017.12.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by PAN Xiao-lin and YU Hai-yan. CUI Wei-xue and ZHANG Can provided and analyzed the measured data. The initial draft of the manuscript was written by PAN Xiao-lin and CUI Wei-xue. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Xiao-lin Pan  (潘晓林).

Additional information

Conflict of interest

PAN Xiao-lin, CUI Wei-xue, ZHANG Can, and YU Hai-yan declare that they have no conflict of interest.

Foundation item

Projects(51674075, 51774079) supported by the National Natural Science Foundation of China; Project(2018YFC1901903) supported by the National Key R&D Program of China; Project(N182508026) supported by the Fundamental Research Funds for the Central Universities of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Xl., Cui, Wx., Zhang, C. et al. Formation kinetics and transition mechanism of CaO·SiO2 in low-calcium system during high-temperature sintering. J. Cent. South Univ. 27, 3269–3277 (2020). https://doi.org/10.1007/s11771-020-4545-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4545-1

Key words

关键词

Navigation