Skip to main content
Log in

Mechanical behaviors of interaction between coral sand and structure surface

珊瑚砂与结构面间相互作用的力学响应

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the interface shear tests, the macro- and meso-mechanical behaviors of interaction between coral sand and different structure surfaces are studied, in which CCD camera is used to capture digital images to analyze the evolution of the interaction band and a particle analysis apparatus is applied to studying the distribution characteristics of particle morphology. This study proposes four-stage evolution process based on the shear stress-strain curve. During the shear process, coral sand particles slide and rotate within the interaction band, causing the changes in shear stress and vertical displacement. In addition, the effects of structure surface roughness on shear strength, volume change and particle breakage are illustrated that the greater the roughness of slabs is, the larger the shear stress is, the more obvious the contraction effect is and the more the particles break. Furthermore, the change in particle’s 3D morphology during the breakage will change not only their size but also other morphological characteristics with convergence and self-organization.

摘要

基于接触面剪切试验, 本文研究了珊瑚砂与不同结构面间相互作用的宏观和细观力学行为。试 验中采用CCD 相机捕获数字图像以分析接触带的演化, 同时应用粒子分析仪研究试验前后颗粒形态 分布特征。基于剪切应力−应变曲线, 本研究提出了剪切过程中的四个演化阶段。在剪切过程中, 试 样剪切应力和垂直位移的变化是由于珊瑚砂在接触带内发生滑动和旋转而产生的; 此外,, 结构表面粗 糙度对剪切强度, 体积变化及颗粒破碎的影响结果表明, 结构面的粗糙度越大, 峰值剪应力越高, 体 积收缩效越明显, 颗粒破碎越显著。在破裂过程中,, 颗粒三维特征不仅发生尺寸变化, 同时颗粒形态 也表现为均一化和自组织变化。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Xin-zhi, JIAO Yu-yong, WANG Ren, HU Ming-jian, MENG Qing-shan, TAN Feng-yi. Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea [J]. Engineering Geology, 2011, 120(1–4): 40–47. DOI: https://doi.org/10.1016/j.enggeo.2011.03.011.

    Article  Google Scholar 

  2. WANG Xin-zhi, WANG Xing, JIN Zong-chuan, ZHU Chang-qi, WANG Ren, MENG Qing-shan. Investigation of engineering characteristics of calcareous soils from fringing reef [J]. Ocean Engineering, 2017, 134(1): 77–86. DOI: https://doi.org/10.1016/j.oceaneng.2017.02.019.

    Article  Google Scholar 

  3. WANG Xin-zhi, WANG Xing, JIN Zong-chuan, MENG Qing-shan, ZHU Chang-qi, WANG Ren. Shear characteristics of calcareous gravelly soil [J]. Bulletin of Engineering Geology and the Environment, 2017, 76(2): 561–573. DOI: https://doi.org/10.1007/s10064-016-0978-z.

    Article  Google Scholar 

  4. NEIL D T. Characteristics and significance of a sub-tropical “low wooded island”: Green island, Moreton Bay, Australia [J]. Journal of Coastal Research, 2000, 16(2): 287–294. http://espace.library.uq.edu.au/view/UQ:139708.

    Google Scholar 

  5. JAFARIAN Y, JAVDANIAN H, HADDAD A. Strain-dependent dynamic properties of Bushehr siliceous-carbonate sand: Experimental and comparative study [J]. Soil Dynamics and Earthquake Engineering, 2018, 107: 339–349. DOI: https://doi.org/10.1016/j.soildyn.2018.01.033.

    Article  Google Scholar 

  6. DEHNAVI Y, SHAHNAZARI H, SALEHZADEH H, REZVANI R. Compressibility and undrained behavior of hormuz calcareous sand [J]. Electronic Journal of Geotechnical Engineering, 2010, 15: 1684–1702.

    Google Scholar 

  7. HASSANLOURAD M, SALEHZADEH H, SHAHNAZARI H. Drained shear strength of carbonate sands based on energy approach [J]. International Jounary of Geotechnical Engneering, 2014, 8(1): 1–9. DOI: https://doi.org/10.1179/1938636213Z.00000000050.

    Article  Google Scholar 

  8. LADE P V, NAM R, LIGGIO R D. Effects of particle crushing in stress drop-relaxation experiments on crushed coral sand [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(3): 500–509. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0000212.

    Article  Google Scholar 

  9. ZHANG Xiao-yan, CAI Yan-yan, ZHOU Hao-ran, YANG Yang, LI Yu-long. Shear behaviors and fractal dimensions of carol sand at large shear strains [J]. Rock and Soil Mechanics, 2017, 40(2): 1–7. DOI: https://doi.org/10.16285/j.rsm.2017.1329. (in Chinese)

    Google Scholar 

  10. HARDIN B O. Crushing of soil particles [J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177–1192. DOI: https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).

    Article  Google Scholar 

  11. HYODO M, NORITAKA A, YUKIO N, SHOGO I, ADRIAN F H. Particle crushing and undrained shear behaviour of sand [C]//The 9th International Offshore Polar Engneering Conference International Society of Offshore and Polar Engineers. 1999: 785–791.

  12. HATTAMLEH O H A, AL-DEEKY H H, AKHTAR M N. The Consequence of particle crushing in engineering properties of granular materials [J]. International Journal of Geoences, 2013, 4(7): 1055–1060. DOI: https://doi.org/10.4236/ijg.2013.47099.

    Google Scholar 

  13. SHAHNAZARI H, REZVANI R. Effective parameters for the particle breakage of calcareous sands: An experimental study [J]. Engineering Geology, 2013, 159(9): 98–105. DOI: https://doi.org/10.1016/j.enggeo.2013.03.005.

    Article  Google Scholar 

  14. ARANGO C. Stress strain behavior and dynamic properties of Cabo Rojo calcareous sands [D]. University of Puerto Rico, 2006.

  15. ZHANG Xiao-yan, CAI Yan-yan, WANG Zhen-bo, JIANG Yun-qian. Fractal breakage and particle shape analysis for coral sand under high-pressure and one-dimensional creep conditions [J]. Rock and Soil Mechanics, 2018, 39(5): 1573–1578. DOI: https://doi.org/10.16285/j.rsm.2017.0763. (in Chinese)

    Google Scholar 

  16. ZHAO Yang, ZHOU Hui, FENG Xia-ting, SHAO Jian-fu, JIANG Quan, MIN Hong, JIANG Ya-li, HUANG Ke. Particle crushing and shear behaviour of an infilled joint soil under different conditions [J]. Rock and Soil Mechanics, 2013, 34(1): 13–22.

    Google Scholar 

  17. POULOS H G. Pile behaviour-theory and application [J]. Géotechnique, 1989, 39(3): 365–415. DOI: https://doi.org/10.1680/geot.1989.39.3.365.

    Article  Google Scholar 

  18. LEE J, PREZZI M, SALGADO R. Experimental investigation of the combined load response of model piles driven in sand [J]. Geotechnical Testing Journal, 2011, 34(6): 653–667. DOI: https://doi.org/10.1520/GTJ103269.

    Google Scholar 

  19. GAVIN K G, IGOE D J P, KIRWAN L. The effect of ageing on the axial capacity of piles in sand [J]. Proceedings of the Institution of Civil Engineers, 2013, 166(2): 122–130. DOI: https://doi.org/10.1680/geng.12.00064.

    Google Scholar 

  20. STRAHLER A W, WALTERS J J, STUEDLEIN A W. Frictional resistance of closely spaced steel reinforcement strips used in MSE walls [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2016, 142(8): 04016030.1. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001492.

    Article  Google Scholar 

  21. JARDINE R J, LEHANE B M, EVERTON S J. Friction coefficients for piles in sands and silts [M]//Offshore Site Investigation and Foundation Behaviour. Springer Netherlands, 1993: 661–677. DOI: https://doi.org/10.1007/978-94-017-2473-931.

  22. TABUCANON J T, AIREY D W, POULOS H G. Pile skin friction in sands from constant normal stiffness tests [J]. Geotechnical Testing Journal, 1995, 18(3): 350–364. DOI: https://doi.org/10.1520/GTJ11004J.

    Article  Google Scholar 

  23. REDDY E S, CHAPMAN D N, SASTRY VVRN. Direct shear linterface test for shaft capacity of piles in sand [J]. Geotechnical Testing Journal, 2000, 23(2): 199–205. DOI: https://doi.org/10.1520/GTJ11044J.

    Article  Google Scholar 

  24. PORCINO D, FIORAVANTE V, GHIONNA V N, PEDRONI S. Interface behavior of sands from constant normal stiffness direct shear tests [J]. Geotechnical Testing Journal, 2003, 26(3): 289–301. DOI: https://doi.org/10.1520/GTJ11308J.

    Google Scholar 

  25. LINGS M L, DIETZ M S. An improved direct shear apparatus for sand [J]. Geotechnique, 2004, 54(4): 245–256. DOI: https://doi.org/10.1680/geot.54.4.245.36353.

    Article  Google Scholar 

  26. ISHIDA T, KANAGAWA T, KANAORI Y. Source distribution of acoustic emissions during an in-situ direct shear test: Implications for an analog model of seismogenic faulting in an inhomogeneous rock mass [J]. Engineering Geology, 2010, 110(3, 4): 66–76. DOI: https://doi.org/10.1016/j.enggeo.2009.11.003.

    Article  Google Scholar 

  27. DEJONG J T, WHITE D J, RANDOLPH M F. Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry [J]. Soils and Foundations, 2006, 46(1): 15–28. DOI: https://doi.org/10.3208/sandf.46.15.

    Article  Google Scholar 

  28. EDIL T B, BOSSCHER P J, SUNDBERG A J. Soil-structure interface shear transfer behavior [C]//Second Japanus Workshop on Testing. 2006: 528–543. DOI: https://doi.org/10.1061/40870(216)35.

  29. WANG De-yin, TANG Chao-sheng, CUI Yu-jun, SHI Bin, LI Jian. Effects of wetting-drying cycles on soil strength profile of a silty clay in micro-penetrometer tests [J]. Engineering Geology, 2016, 206: 60–70. DOI: https://doi.org/10.1016/j.enggeo.2016.04.005.

    Article  Google Scholar 

  30. SAKLESHPUR V A, PREZZI M, SALGADO R, SIDDIKI N Z, CHOI Y S. Large-scale direct shear testing of geogrid-reinforced aggregate base over weak subgrade [J]. The International Journal of Pavement Engineering, 2019, 20(5, 6): 649–658. DOI: https://doi.org/10.1080/10298436.2017.1321419.

    Article  Google Scholar 

  31. HO T Y K, JARDINE R J, ANH-MING N. Large-displacement interface shear between steel and granular media [J]. Géotechnique, 2011, 61(3): 221–234. DOI: https://doi.org/10.1680/geot.8.P.086.

    Article  Google Scholar 

  32. ARAUJO V S Q, DYVIK R, MORTENSEN N. Interface friction angle soil-on-steel from ring shear tests on offshore north sea sands [C]//Geotechnical Frontiers 2017. 2017: 358–367. DOI: https://doi.org/10.1061/9780784480472.038.

  33. HEBELER G L, MARTINEZ A, FROST J D. Shear zone evolution of granular soils in contact with conventional and textured CPT friction sleeves [J]. KSCE Journal of Civil Engineering, 2016, 20(4): 1267–1282. DOI: https://doi.org/10.1007/s12205-015-0767-6.

    Article  Google Scholar 

  34. JIN Z H, YANG Q, CHEN C, LENG W M, GUO F Q, ZHAO C Y. Expermenal study on effects of the roughness on mechanical behaviors of concrete-sand interface [J]. Chinese Jounary of Rock Mechanics Engneering, 2018, 37(3): 754–765. DOI: https://doi.org/10.13722/j.cnki.jrme.2017.1311.

    Google Scholar 

  35. HAN F, GANJU E, SALGADO R, PREZZI M. Effects of interface roughness, particle geometry, and gradation on the sand-steel interface friction angle [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2018, 144(12): 04018096. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001990.

    Article  Google Scholar 

  36. FROST J D, DEJONG J T, RECALDE M. Shear failure behavior of granular-continuum interfaces [J]. Engineering Fracture Mechanics, 2002, 69(17): 2029–2048. DOI: https://doi.org/10.1016/S0013-7944(02)00075-9.

    Article  Google Scholar 

  37. HRYCIW R D, IRSYAM M. Behavior of sand particles around rigid ribbed inclusions during shear [J]. Soils & Foundations, 1993, 33(3): 1–13. DOI: https://doi.org/10.3208/sandf1972.33.3_1.

    Article  Google Scholar 

  38. DOVE J E, JARRETT J B. Behavior of dilative sand interfaces in a geotribology framework [J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(1): 25–37. DOI: https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(25).

    Article  Google Scholar 

  39. UESUGI M, KISHIDA H. Frictional resistance at yield between dry sand and mild steel [J]. Journal of the Japanese Society of Soil Mechanics & Foundation Engineering, 1986, 26(4): 139–149. DOI: https://doi.org/10.3208/sandf1972.26.4_139.

    Article  Google Scholar 

  40. SUBBA K S, RAO K S S, ALLAM M M, ROBINSON R G. Interfacial friction between sands and solid surfaces [J]. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 1998, 131(2): 75–82. DOI: https://doi.org/10.1680/igeng.1998.30112.

    Article  Google Scholar 

  41. KOVAL G, CHEVOIR F, ROUX J N, SULEM J, CORFDIR A. Interface roughness effect on slow cyclic annular shear of granular materials [J]. Granular Matter, 2011, 13(5): 525–540. DOI: https://doi.org/10.1007/s10035-011-0267-2.

    Article  Google Scholar 

  42. TOVAR-VALENCIA R D, GALVIS-CASTRO A, SALGADO R, PREZZI M. Effect of surface roughness on the shaft resistance of displacement model piles in sand [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(3): 04017120. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001828.

    Article  Google Scholar 

  43. BLABER J, ADAIR B, ANTONIOU A. Ncorr: Open-source 2D digital image correlation matlab software [J]. Experimental Mechanics, 2015, 55(6): 1105–1122. DOI: https://doi.org/10.1007/s11340-015-0009-1.

    Article  Google Scholar 

  44. HU L M, PU J L. Experimental study on mechanical characteristics of soil-structure interface [J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 431–435. DOI: https://doi.org/10.1086/377276. (in Chinese)

    Google Scholar 

  45. CHEN Xiao-bin, ZHANG Jia-sheng. Effect of load duration on particle breakage and dilative behavior of residual soil [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(9): 06016008. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001488.

    Article  Google Scholar 

  46. XIAO Yang, LIU Han-long, CHEN Yu-min, JIANG Jing-shan. Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: Influence of particle breakage [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(12): 04014071.1. DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001177.

    Article  Google Scholar 

  47. LIU Qing-bing, XIANG Wei, BUDHU M, CUI De-shan. Study of particle shape quantification and effect on mechanical property of sand [J]. Rock and Soil Mechanics, 2011, 32(1): 190–197. DOI: https://doi.org/10.16285/j.rsm.2011.s1.121.

    Google Scholar 

  48. XIAO Yang, LONG Lei-hang, EVANS T M, ZHOU Hai, LIU Hai-long, STUEDLEIN A W. Effect of particle shape on stress-dilatancy responses of medium-dense sands [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(2): 04018105. DOI: https://doi.org/10.1061/(ASCE)GT.19435606.0001994.

    Article  Google Scholar 

  49. ZHANG B Y, ZHANG J H, SUN G L. Particle breakage of argillaceous siltstone subjected to stresses and weathering [J]. Engineering Geology, 2012, 137-138: 21–28. DOI: https://doi.org/10.1016/j.enggeo.2012.03.009.

    Article  Google Scholar 

  50. PartAn3D Maxi Pro. [OL] [2020-02-12] https://www.microtrac.com/partan-si-pro-online-wet-dispersion-particle-size-and-shape-analyzer/.

Download references

Author information

Authors and Affiliations

Authors

Contributions

FENG Ze-kang conducted series of tests, wrote the manuscript and analyzed the results. XU Wen-jie designed tests and also provided writing assistant for the manuscript. MENG Qing-shan gave suggestions about the experiment, and edited the manuscript.

Corresponding author

Correspondence to Wen-jie Xu  (徐文杰).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item

Project(2017YFC0805406) supported by the National Key Research and Development Program of China; Projects (51879142, 51679123) supported by the National Natural Science Foundation of China; Project(2020-KY-04) supported by the Research Fund Program of the State Key Laboratory of Hydroscience and Engineering, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Zk., Xu, Wj. & Meng, Qs. Mechanical behaviors of interaction between coral sand and structure surface. J. Cent. South Univ. 27, 3436–3449 (2020). https://doi.org/10.1007/s11771-020-4557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4557-x

Key words

关键词

Navigation