Skip to main content
Log in

Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method

选择性浸出-沉淀法回收废磷酸铁锂电池

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Applying spent lithium iron phosphate battery as raw material, valuable metals in spent lithium ion battery were effectively recovered through separation of active material, selective leaching, and stepwise chemical precipitation. Using stoichiometric Na2S2O8 as an oxidant and adding low-concentration H2SO4 as a leaching agent was proposed. This route was totally different from the conventional methods of dissolving all of the elements into solution by using excess mineral acid. When experiments were done under optimal conditions (Na2S2O8-to-Li molar ratio 0.45, 0.30 mol/L H2SO4, 60 °C, 1.5 h), leaching efficiencies of 97.53% for Li+, 1.39% for Fe3+, and 2.58% for PO43− were recorded. FePO4 was then recovered by a precipitation method from the leachate while maintaining the pH at 2.0. The mother liquor was concentrated and maintained at a temperature of approximately 100 °C, and then a saturated sodium carbonate solution was added to precipitate Li2CO3. The lithium recovery yield was close to 80%.

摘要

以废磷酸铁锂电池为原料, 通过活性物质分离、选择性浸出、逐步化学沉淀等工序回收废旧锂 离子电池中的有价金属。提出了使用化学计量比的Na2S2O8 作为氧化剂并添加低浓度H2SO4 作为浸出 剂进行实验。该方法与传统上使用过量无机酸将所有元素溶解到溶液中的常规方法完全不同。在最佳 条件下进行实验下(Na2S2O8 和Li 的摩尔比0.45; 0.30 mol /L H2SO4; 60 °C; 1.5 h), 记录Li+的浸出效 率为97.53%, Fe3+的浸出效率为1.39%, PO4 3−的浸出效率为2.58%。然后通过控制pH 为2.0 使用沉 淀法从浸出液中回收FePO4。将母液浓缩并保持在约100 °C 的温度, 然后加入饱和碳酸钠溶液以沉淀 Li2CO3, 此时锂回收率接近80%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. KERMAN K, LUNTZ A, VISWANATHAN V, CHIANG Y M, CHEN Zhe-bo. Review: Practical challenges hindering the development of solid state Li ion batteries [J]. Journal of the Electrochemical Society, 2017, 164(7): A1731–A1744. DOI: https://doi.org/10.1149/2.1571707jes.

    Article  Google Scholar 

  2. EL KHARBACHI A, ZAVOROTYNSKA O, LATROCHE M, CUEVAS F, YARTYS V, FICHTNER M. Exploits, advances and challenges benefiting beyond Li-ion battery technologies [J]. Journal of Alloys and Compounds, 2020, 817: 153261. DOI: https://doi.org/10.1016/j.jallcom.2019.153261.

    Article  Google Scholar 

  3. STEWARD D, MAYYAS A, MANN M. Economics and challenges of Li-ion battery recycling from end-of-life vehicles [J]. Procedia Manufacturing, 2019, 33: 272–279. DOI: https://doi.org/10.1016/j.promfg.2019.04.033.

    Article  Google Scholar 

  4. YAN Kang, GUO Xue-yi, TIAN Qing-hua, LI Dong. Cobalt flow analysis of lithium-ion battery system in China [J]. Journal of Central South University: Science and Technology, 2017, 48(1): 25–30. DOI: https://doi.org/10.11817/j.issn.1672-7207.2017.01.004. (in Chinese)

    Google Scholar 

  5. LI Huan, XING Sheng-zhou, LIU Yu, LI Fu-jie, GUO Hui, GE Kuang. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017–8024. DOI: https://doi.org/10.1021/acssuschemeng.7b01594.

    Article  Google Scholar 

  6. LI Huan, XING Sheng-zhou, LIU Yu, LI Fu-jie, GUO Hui, KUANG Ge. Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system [J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 8017–8024.

    Article  Google Scholar 

  7. LIU Chun-wei, LIN Jiao, CAO Hong-bin, ZHANG Yi, SUN Zhi. Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review [J]. Journal of Cleaner Production, 2019, 228: 801–813. DOI: https://doi.org/10.1016/j.jclepro.2019.04.304.

    Article  Google Scholar 

  8. BERTUOL D A, MACHADO C M, SILVA M L, CALGARO C O, DOTTO G L, TANABE E H. Recovery of cobalt from spent lithium-ion batteries using supercritical carbon dioxide extraction [J]. Waste Management, 2016, 51: 245–251. DOI: https://doi.org/10.1016/j.wasman.2016.03.009.

    Article  Google Scholar 

  9. ZHU Shu-guang, HE Wen-zhi, LI Guang-ming, ZHOU Xu, ZHANG Xiao-jun, HUANG Ju-wen. Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2274–2281. DOI:https://doi.org/10.1016/s1003-6326(11)61460-x.

    Article  Google Scholar 

  10. JHA A K, JHA M K, KUMARI A, SAHU S K, KUMAR V, PANDEY B D. Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant [J]. Separation and Purification Technology, 2013, 104: 160–166. DOI: https://doi.org/10.1016/j.seppur.2012.11.024.

    Article  Google Scholar 

  11. BERTUOL D A, TONIASSO C, JIMÉNEZ B M, MEILI L, DOTTO G L, TANABE E H, AGUIAR M L. Application of spouted bed elutriation in the recycling of lithium ion batteries [J]. Journal of Power Sources, 2015, 275: 627–632. DOI: https://doi.org/10.1016/j.jpowsour.2014.11.036.

    Article  Google Scholar 

  12. GOLMOHAMMADZADEH R, FARAJI F, RASHCHI F. Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: A review [J]. Resources, Conservation and Recycling, 2018, 136: 418–435. DOI: https://doi.org/10.1016/j.resconrec.2018.04.024.

    Article  Google Scholar 

  13. GAO Rui-chuan, SUN Cong-hao, XU Li-jun, ZHOU Tao, ZHUANG Lu-qi, XIE Hua-sheng. Recycling LiNi0.5Co0.2Mn0.3O2 material from spent lithium-ion batteries by oxalate co-precipitation [J]. Vacuum, 2020, 173: 109181. DOI: https://doi.org/10.1016/j.vacuum.2020.109181.

    Article  Google Scholar 

  14. BIAN Dou-cheng, SUN Yong-hui, LI Sheng, TIAN Yuan, YANG Ze-heng, FAN Xiao-ming, ZHANG Wei-xin. A novel process to recycle spent LiFePO4 for synthesizing LiFePO4/C hierarchical microflowers [J]. Electrochimica Acta, 2016, 190: 134–140. DOI: https://doi.org/10.1016/j.electacta.2015.12.114.

    Article  Google Scholar 

  15. KIM H S, SHIN E J. Re-synthesis and electrochemical characteristics of LiFePO4 cathode materials recycled from scrap electrodes [J]. Bulletin of the Korean Chemical Society, 2013, 34(3): 851–855. DOI: https://doi.org/10.5012/bkcs.2013.34.3.851.

    Article  MathSciNet  Google Scholar 

  16. CHEN Jiang-ping, LI Qing-wen, SONG Ji-shun, SONG Da-wei, ZHANG Lian-qi, SHI Xian-xing. Environmentally friendly recycling and effective repairing of cathode powders from spent LiFePO4 batteries [J]. Green Chemistry, 2016, 18(8): 2500–2506. DOI: https://doi.org/10.1039/c5gc02650d.

    Article  Google Scholar 

  17. SONG X, HU T, LIANG C, LONG H L, ZHOU L, SONG W, YOU L, WU Z S, LIU J W. Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method [J]. RSC Advances, 2017, 7(8): 4783–4790. DOI: https://doi.org/10.1039/c6ra27210j.

    Article  Google Scholar 

  18. DORELLA G, MANSUR M B. A study of the separation of cobalt from spent Li-ion battery residues [J]. Journal of Power Sources, 2007, 170(1): 210–215. DOI: https://doi.org/10.1016/j.jpowsour.2007.04.025.

    Article  Google Scholar 

  19. DORELLA G, MANSUR M B. A study of the separation of cobalt from spent Li-ion battery residues [J]. Journal of Power Sources, 2007, 170(1): 210–215.

    Article  Google Scholar 

  20. ZOU Hai-yang, GRATZ E, APELIAN D, WANG Yan. A novel method to recycle mixed cathode materials for lithium ion batteries [J]. Green Chemistry, 2013, 15(5): 1183–1191. DOI: https://doi.org/10.1039/c3gc40182k.

    Article  Google Scholar 

  21. WANG Hong-gang, FRIEDRICH B. Development of a highly efficient hydrometallurgical recycling process for automotive Li-ion batteries [J]. Journal of Sustainable Metallurgy, 2015, 1(2): 168–178. DOI: https://doi.org/10.1007/s40831-015-0016-6.

    Article  Google Scholar 

  22. BANERJEE M, KONAR R S. Comment on the paper “polymerization of acrylonitrile initiated by K2S2O8-Fe(II) redox system” [J]. Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22(5): 1193–1195. DOI: https://doi.org/10.1002/pol.1984.170220519.

    Google Scholar 

  23. TSAO M S, WILMARTH W K. The aqueous chemistry of inorganic free radicals. I. The mechanism of the photolytic decomposition of aqueous persulfate ion and evidence regarding the sulfate-hydroxyl radical interconversion equilibrium [J]. The Journal of Physical Chemistry, 1959, 63(3): 346–353. DOI: https://doi.org/10.1021/j150573a006.

    Article  Google Scholar 

  24. LIANG Chen-ju, BRUELL C J, MARLEY M C, SPERRY K L. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfatethiosulfate redox couple [J]. Chemosphere, 2004, 55(9): 1213–1223. DOI: https://doi.org/10.1016/j.chemosphere.2004.01.029.

    Article  Google Scholar 

  25. LIANG Chen-ju, BRUELL C J, MARLEY M C, SPERRY K L Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion [J]. Chemosphere, 2004, 55(9): 1225–1233. DOI: https://doi.org/10.1016/j.chemosphere.2004.01.030.

    Article  Google Scholar 

  26. FORDHAM J W L, WILLIAMS H L. The persulfate-iron (II) initiator system for free radical polymerizations [J]. Journal of the American Chemical Society, 1951, 73(10): 4855–4859. DOI: https://doi.org/10.1021/ja01154a114.

    Article  Google Scholar 

  27. ZHANG Ping-wei, YOKOYAMA T, ITABASHI O, SUZUKI T M, INOUE K. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries [J]. Hydrometallurgy, 1998, 47(2,3): 259–271. DOI: https://doi.org/10.1016/S0304-386X(97)00050-9.

    Article  Google Scholar 

  28. TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359–367. DOI: https://doi.org/10.1038/35104644.

    Article  Google Scholar 

  29. ZHENG Ru-juan, ZHAO Li, WANG Wen-hui, LIU Yuan-long, MA Quan-xin, MU De-ying, LI Ru-hong, DAI Chang-song. Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method [J]. RSC Advances, 2016, 6(49): 43613–43625. DOI: https://doi.org/10.1039/c6ra05477c.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YE Hua provided the idea of the study and developed the research goal. LI Hao-yu led the research activity planning and execution. SUN Ming-cang made great contribution to the improvement of manuscript after the initial edition. CHEN Wu-jie offered some valuable suggestions for analyzing the test data. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Hua Ye  (叶华).

Additional information

Conflict of interest

LI Hao-yu, YE Hua, SUN Ming-cang and CHEN Wu-jie declare that they have no conflict of interest.

Foundation item

Project(Z20160605230001) supported by Hunan Province Non-ferrous Fund Project, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Hy., Ye, H., Sun, Mc. et al. Process for recycle of spent lithium iron phosphate battery via a selective leaching-precipitation method. J. Cent. South Univ. 27, 3239–3248 (2020). https://doi.org/10.1007/s11771-020-4543-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-020-4543-3

Key words

关键词

Navigation