Skip to main content
Log in

High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

We present a one-step route for the preparation of nickel phosphide/carbon nanotube (Ni2P@CNT) nano-composites for supercapacitor applications using a facile, ultrafast (90 s) microwave-based approach. Ni2P nanoparticles could grow uniformly on the surface of CNTs under the optimized reaction conditions, namely, a feeding ratio of 30:50:25 for CNT, Ni(NO3)2 · 6H2O, and red phosphorus and a microwave power of 1000 W for 90 s. Our study demonstrated that the single-step microwave synthesis process for creating metal phosphide nanoparticles was faster and simpler than all the other existing methods. Electrochemical results showed that the specific capacitance of the optimal Ni2P@CNT-nanocomposite electrode displayed a high specific capacitance of 854 F · g−1 at 1 A · g−1 and a superior capacitance retention of 84% after 5000 cycles at 10 A·g−1. Finally, an asymmetric supercapacitor was assembled using the nanocomposite with activated carbon as one electrode (Ni2P@CNT//AC), which showed a remarkable energy density of 33.5 W · h · kg−1 and a power density of 387.5 W·kg−1. This work will pave the way for the microwave synthesis of other transition metal phosphide materials for use in energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kong S Y, Cheng K, Ouyang T, Gao Y Y, Ye K, Wang G L, Cao D X. Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors. Electrochimica Acta, 2017, 226: 29–39

    CAS  Google Scholar 

  2. Zhang N, Ding Y H, Zhang J Y, Fu B, Zhang X L, Zheng X F, Fang Y Z. Construction of MnO2 nanowires@Ni1−xCoxOy nanoflake core-shell heterostructure for high performance supercapacitor. Journal of Alloys and Compounds, 2017, 694: 1302–1308

    CAS  Google Scholar 

  3. Li Y J, Ou-Yang W, Xu X T, Wang M, Hou S J, Lu T, Yao Y F, Pan L K. Micro-/mesoporous carbon nanofibers embedded with ordered carbon for flexible supercapacitors. Electrochimica Acta, 2018, 271: 591–598

    CAS  Google Scholar 

  4. Li Y J, Zhu G, Huang H L, Xu M, Lu T, Pan L K. A N, S dual doping strategy via electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(15): 9040–9050

    CAS  Google Scholar 

  5. Xu X T, Liu Y, Wang M, Zhu C, Lu T, Zhao R, Pan L K. Hierarchical hybrids with microporous carbon spheres decorated three-dimensional graphene frameworks for capacitive applications in supercapacitor and deionization. Electrochimica Acta, 2016, 193: 88–95

    CAS  Google Scholar 

  6. Liu Z, Zhang L, Wang R G, Poyraz S, Cook J, Bozack M J, Das S, Zhang X Y, Hu L B. Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides. Scientific Reports, 2016, 6(1): 22503

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu Z, Chang Z, Zhu W, Sun X. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chemical Communications, 2011, 47(34): 9651

    CAS  PubMed  Google Scholar 

  8. Xie J, Sun X, Zhang N, Xu K, Zhou M, Xie Y. Layer-by-layer beta-Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy, 2013, 2(1): 65–74

    CAS  Google Scholar 

  9. Muzaffar A, Ahamed M B, Deshmukh K, Thirumalai J. A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renewable & Sustainable Energy Reviews, 2019, 101: 123–145

    CAS  Google Scholar 

  10. Zhang Q, Uchaker E, Candelaria S L, Cao G. Nanomaterials for energy conversion and storage. Chemical Society Reviews, 2013, 42 (7): 3127–3171

    CAS  PubMed  Google Scholar 

  11. Wang Y, Song Y, Xia Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications. Chemical Society Reviews, 2016, 45(21): 5925–5950

    CAS  PubMed  Google Scholar 

  12. Arul N S, Han J I. Enhanced pseudocapacitance of NiSe2/Ni(OH)2 nanocomposites for supercapacitor electrode. Materials Letters, 2019, 234: 87–91

    CAS  Google Scholar 

  13. Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy & Environmental Science, 2015, 8(3): 702–730

    CAS  Google Scholar 

  14. Zhang N, Li Y F, Xu J Y, Li J J, Wei B, Ding Y, Arnorim I, Thomas R, Thalluri S M, Liu Y Y, et al. High-performance flexible solidstate asymmetric supercapacitors based on bimetallic transition metal phosphide nanocrystals. ACS Nano, 2019, 13(9): 10612–10621

    CAS  PubMed  Google Scholar 

  15. Chen H C, Jiang S P, Xu B H, Huang C H, Hu Y Z, Qin Y L, He M X, Cao H J. Sea-urchin-like nickel-cobalt phosphide/phosphate composites as advanced battery materials for hybrid supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(11): 6241–6249

    CAS  Google Scholar 

  16. Panneerselvam A, Malik M A, Afzaal M, O’Brien P, Helliwell M. The chemical vapor deposition of nickel phosphide or selenide thin films from a single precursor. Journal of the American Chemical Society, 2008, 130(8): 2420–2421

    CAS  PubMed  Google Scholar 

  17. Li X, Elshahawy A M, Guan C, Wang J. Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small, 2017, 13(39): 1701530

    Google Scholar 

  18. Pang H, Wei C, Ma Y, Zhao S, Li G, Zhang J, Chen J, Li S. Nickel phosphite superstructures assembled by nanotubes: original application for effective electrode materials of supercapacitors. ChemPlusChem, 2013, 78(6): 546–553

    CAS  Google Scholar 

  19. Zhao Y, Zhao M, Ding X, Liu Z R, Tian H, Shen H H, Zu X T, Li S A, Qiao L. One-step colloid fabrication of nickel phosphides nanoplate/nickel foam hybrid electrode for high-performance asymmetric supercapacitors. Chemical Engineering Journal, 2019, 373: 1132–1143

    CAS  Google Scholar 

  20. Hou S J, Xu X T, Wang M, Xu Y Q, Lu T, Yao Y F, Pan L K. Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(369): 19054–19061

    CAS  Google Scholar 

  21. Jiang H, Zhao T, Li C, Ma J. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. Journal of Materials Chemistry, 2011, 21(11): 3818–3823

    CAS  Google Scholar 

  22. Liu M C, Kong L B, Kang L, Li X, Walsh F C, Xing M, Lu C, Ma X J, Luo Y C. Synthesis and characterization of M3V2O8 (M = Ni or Co) based nanostructures: a new family of high performance pseudocapacitive materials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2014, 2(14): 4919–4926

    CAS  Google Scholar 

  23. Shih Y L, Wu C L, Wu T Y, Chen D H. Electrochemical fabrication of nickel phosphide/reduced graphene oxide/nickel oxide composite on nickel foam as a high performance electrode for supercapacitors. Nanotechnology, 2019, 30(11): 115601

    CAS  PubMed  Google Scholar 

  24. Lv Z J, Zhong Q, Bu Y F. In-situ conversion of rGO/Ni2P composite from GO/Ni-MOF precursor with enhanced electrochemical property. Applied Surface Science, 2018, 439: 413–419

    CAS  Google Scholar 

  25. Zhang X, Han M M, Liu G Q, Wang G Z, Zhang Y X, Zhang H M, Zhao H J. Simultaneously high-rate furfural hydrogenation and oxidation upgrading on nanostructured transition metal phosphides through electrocatalytic conversion at ambient conditions. Applied Catalysis B: Environmental, 2019, 244: 899–908

    CAS  Google Scholar 

  26. Wang J, Ciucci F. In-situ synthesis of bimetallic phosphide with carbon tubes as an active electrocatalyst for oxygen evolution reaction. Applied Catalysis B: Environmental, 2019, 254: 292–299

    CAS  Google Scholar 

  27. Lin Y, Zhang J, Pan Y, Liu Y Q. Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution. Applied Surface Science, 2017, 422: 828–837

    CAS  Google Scholar 

  28. Xu J Y, Li J J, Xiong D H, Zhang B S, Liu Y F, Wu K H, Amorim I, Li W, Liu L F. Trends in activity for the oxygen evolution reaction on transition metal (M = Fe, Co, Ni) phosphide precatalysts. Chemical Science (Cambridge), 2018, 9(14): 3470–3476

    CAS  Google Scholar 

  29. Huang Y F, Chiueh P T, Kuan W H, Lo S L. Microwave pyrolysis of lignocellulosic biomass: heating performance and reaction kinetics. Energy, 2016, 100: 137–144

    CAS  Google Scholar 

  30. Dong J Y, Lu G, Yue J S, Cheng Z M, Kang X H. Valence modulation in hollow carbon nanosphere/manganese oxide composite for high performance supercapacitor. Applied Surface Science, 2019, 480: 1116–1125

    CAS  Google Scholar 

  31. Poyraz S, Zhang L, Schroder A, Zhang X Y. Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Applied Materials & Interfaces, 2015, 7(40): 22469–22477

    CAS  Google Scholar 

  32. Tian Y R, Du H S, Zhang M M, Zheng Y Y, Guo Q P, Zhang H P, Luo J J, Zhang X Y. Microwave synthesis of MoS2/MoO2@CNT nanocomposites with excellent cycle stability for supercapacitor electrodes. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2019, 7(31): 9545–9555

    CAS  Google Scholar 

  33. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi A A. Heterojunction photocatalysts. Advanced Materials, 2017, 29(20): 1601694

    Google Scholar 

  34. Wang Z J, Jin Z L, Yuan H, Wang G R, Ma B Z. Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting. Journal of Colloid and Interface Science, 2018, 532: 287–299

    CAS  PubMed  Google Scholar 

  35. Xie S L, Gou J X. Facile synthesis of Ni2P/Ni12P5 composite as long-life electrode material for hybrid supercapacitor. Journal of Alloys and Compounds, 2017, 713: 10–13

    CAS  Google Scholar 

  36. Hosseini M G, Shahryari E. Synthesis. Characterization and electrochemical study of graphene oxide-multi walled carbon nanotube-manganese oxide-polyaniline electrode as supercapacitor. Journal of Materials Science and Technology, 2016, 32(8): 763–773

    CAS  Google Scholar 

  37. Ghasem H M, Elham S. Anchoring RuO2 nanoparticles on reduced graphene oxide-multi-walled carbon nanotubes as a high-performance supercapacitor. Ionics, 2019, 25(5): 2383–2391

    Google Scholar 

  38. Yang X, Tian Y R, Sarwar S, Zhang M M, Zhang H P, Luo J J, Zhang X Y. Comparative evaluation of PPyNF/CoOx and PPyNT/CoOx nanocomposites as battery-type supercapacitor materials via a facile and low-cost microwave synthesis approach. Electrochimica Acta, 2019, 311: 230–243

    CAS  Google Scholar 

  39. Bi Y H, Nautiyal A, Zhang H P, Luo J J, Zhang X Y. One-pot microwave synthesis of NiO/MnO2 composite as a high performance electrode material for supercapacitors. Electrochimica Acta, 2017, 260: 952–928

    Google Scholar 

  40. Zhao G Z, Li Y J, Zhu G, Shi J Y, Lu T, Pan L K. Biomass-based N, P, and S self-doped porous carbon for high performance supercapacitors. ACS Sustainable Chemistry & Engineering, 2019, 7(14): 12052–12060

    CAS  Google Scholar 

  41. Han L, Huang H L, Li J F, Yang Z L, Zhang X L, Zhang D F, Liu X J, Xu M, Pan L K. Novel zinc-iodine hybrid supercapacitors with a redox iodide ion electrolyte and B, N dual-doped carbon electrode exhibit boosted energy density. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2019, 7(42): 24400–24407

    CAS  Google Scholar 

  42. Lou P, Cui Z, Jia Z, Sun J, Tan Y, Guo X. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano, 2017, 11(4): 3705–3715

    CAS  PubMed  Google Scholar 

  43. Sun L, Zhang Y, Zhang D Y, Zhang Y H. Amorphous red phosphorus nanosheets anchored on graphene layers as high performance anodes for lithium ion batteries. Nanoscale, 2017, 9 (46): 18552–18560

    CAS  PubMed  Google Scholar 

  44. Chen L, Bai H, Huang Z, Li L. Mechanism investigation and suppression of self-discharge in active electrolyte enhanced supercapacitors. Energy & Environmental Science, 2014, 7(5): 1750–759

    CAS  Google Scholar 

  45. Barzegar F, Khaleed A A, Ugbo F U, Oyeniran K O, Momodu D Y, Bello A, Dangbegnon J K, Manyala N. Cycling and floating performance of symmetric supercapacitor derived from coconut shell biomass. AIP Advances, 2016, 6(11): 115306

    Google Scholar 

  46. An C H, Wang Y J, Li L, Qiu F Y, Xu Y N, Xu C C, Huang Y N, Jiao F, Yuan H T. Effects of highly crumpled graphene nanosheets on the electrochemical performances of pseudocapacitor electrode materials. Electrochimica Acta, 2014, 133: 180–187

    CAS  Google Scholar 

  47. Ding Y L, Alias H, Wen D S, Williams R A. Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer, 2006, 49(1): 240–250

    CAS  Google Scholar 

  48. Wu C, Kopold P, van Aken P A, Maier J, Yu Y. High performance graphene/Ni2P hybrid anodes for lithium and sodium storage through 3D yolk-shell-like nanostructural design. Advanced Materials, 2017, 29(3): 1604015

    Google Scholar 

  49. Lu Y, Tu J P, Xiong Q Q, Xiang J Y, Mai Y J, Zhang J, Qiao Y Q, Wang X L, Gu C D, Mao S X. Controllable synthesis of a monophase nickel phosphide/carbon (Ni5P4/C) composite electrode via wet-chemistry and a solid-state reaction for the anode in lithium secondary batteries. Advanced Functional Materials, 2012, 22(18): 3927–3935

    CAS  Google Scholar 

  50. Guang Z X, Huang Y, Chen X F, Sun X, Wang M Y, Feng X S, Chen C, Liu X D. Three-dimensional P-doped carbon skeleton with built-in Ni2P nanospheres as efficient polysulfides barrier for highperformance lithium-sulfur batteries. Electrochimica Acta, 2019, 307: 260–268

    CAS  Google Scholar 

  51. Chen X, Cheng M, Chen D, Wang R. Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Applied Materials & Interfaces, 2016, 8(6): 3892–3900

    CAS  Google Scholar 

  52. Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H. A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Advanced Materials, 2016, 28(19): 3646–3652

    CAS  PubMed  Google Scholar 

  53. Lan Y Y, Zhao H Y, Zong Y, Li X H, Sun Y, Feng J, Wang Y, Zheng X T, Du Y P. Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale, 2018, 10(25): 11775–11781

    CAS  PubMed  Google Scholar 

  54. Wang D, Kong L B, Liu M C, Luo Y C, Kang L. An approach to preparing Ni-P with different phases for use as supercapacitor electrode materials. Chemistry (Weinheim an der Bergstrasse, Germany), 2015, 21(49): 17897–17903

    CAS  Google Scholar 

  55. Ochai-Ejeh F, Madito M J, Makgopa K, Rantho M N, Olaniyan O, Manyala N. Electrochemical performance of hybrid supercapacitor device based on birnessite-type manganese oxide decorated on uncapped carbon nanotubes and porous activated carbon nanostructures. Electrochimica Acta, 2018, 289: 363–375

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank National Natural Science Foundation of China (Grant No. 21306124) for the financial support of this work and Haishun Du acknowledges the financial support from the China Scholarship Council (Grant No. 201708120052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jujie Luo or Xinyu Zhang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Du, H., Sarwar, S. et al. High-performance supercapacitors based on Ni2P@CNT nanocomposites prepared using an ultrafast microwave approach. Front. Chem. Sci. Eng. 15, 1021–1032 (2021). https://doi.org/10.1007/s11705-020-2006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-2006-x

Keywords

Navigation