Skip to main content
Log in

Fault-tolerant control of an open-winding brushless doubly-fed wind power generator system with dual three-level converter

  • Research Article
  • Published:
Frontiers in Energy Aims and scope Submit manuscript

Abstract

To improve the fault redundancy capability for the high reliability requirement of a brushless doubly-fed generation system applied to large offshore wind farms, the control winding of a brushless doubly-fed reluctance generator is designed as an open-winding structure. Consequently, the two ends of the control winding are connected via dual three-phase converters for the emerging open-winding structure. Therefore, a novel fault-tolerant control strategy based on the direct power control scheme is brought to focus in this paper. Based on the direct power control (DPC) strategy, the post-fault voltage vector selection method is explained in detail according to the fault types of the dual converters. The fault-tolerant control strategy proposed enables the open-winding brushless doubly-fed reluctance generator (BDFRG) system to operate normally in one, two, or three switches fault of the converter, simultaneously achieving power tracking control. The presented results verify the feasibility and validity of the scheme proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaal H, Jovanovic M. Toward a generic torque and reactive power controller for doubly fed machines. IEEE Transactions on Power Electronics, 2012, 27(1): 113–121

    Article  Google Scholar 

  2. Chaal H, Jovanovic M. Practical implementation of sensorless torque and reactive power control of doubly fed machines. IEEE Transactions on Industrial Electronics, 2012, 59(6): 2645–2653

    Article  Google Scholar 

  3. Cheng M, Zhu Y. The state of the art of wind energy conversion systems and technologies: a review. Energy Conversion and Management, 2014, 88: 332–347

    Article  Google Scholar 

  4. Attya A B, Ademi S, Jovanovic M, et al. Frequency support using doubly fed induction and reluctance wind turbine generators. International Journal of Electrical Power & Energy Systems, 2018, 101: 403–414

    Article  Google Scholar 

  5. Zhang A, Wang X, Jia W, et al. Indirect stator-quantities control for the brushless doubly fed induction machine. IEEE Transactions on Power Electronics, 2014, 29(3): 1392–1401

    Article  Google Scholar 

  6. Prasad R, Mulla M. A novel position-sensorless algorithm for field-oriented control of DFIG with reduced current sensors. IEEE Transactions on Sustainable Energy, 2019, 10(3): 1098–1108

    Article  Google Scholar 

  7. Cheng M, Han P, Buja G, et al. Emerging multiport electrical machines and systems: past developments, current challenges, and future prospects. IEEE Transactions on Industrial Electronics, 2018, 65(7): 5422–5435

    Article  Google Scholar 

  8. Choi U, Lee J, Blaabjerg F, et al. Open-circuit fault diagnosis and fault-tolerant control for a grid-connected NPC inverter. IEEE Transactions on Power Electronics, 2016, 31(10): 7234–7247

    Google Scholar 

  9. Yang S, Bryant A, Mawby P, et al. An industry-based survey of reliability in power electronic converters. IEEE Transactions on Industry Applications, 2011, 47(3): 1441–1451

    Article  Google Scholar 

  10. Lu B, Sharma S. A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Transactions on Industry Applications, 2009, 45(5): 1770–1777

    Article  Google Scholar 

  11. Kwak S. Fault-tolerant structure and modulation strategies with fault detection method for matrix converters. IEEE Transactions on Power Electronics, 2010, 25(5): 1201–1210

    Article  Google Scholar 

  12. Hoang K D, Zhu Z Q. Comparative performance study of alternate fault-tolerant inverter configurations for direct torque control-based three phase PM BLAC drives under single-phase open-circuit fault. In: 8th IET International Conference on Power Electronics, Machines and Drives (PEMD 2016), Glasgow, UK, 2016

  13. Welchko B A, Lipo T A, Jahns T M, et al. Fault tolerant three-phase AC motor drive topologies: a comparison of features, cost, and limitations. IEEE Transactions on Power Electronics, 2004, 19(4): 1108–1116

    Article  Google Scholar 

  14. Shahbazi M, Saadate S, Poure P, et al. Open-circuit switch fault tolerant wind energy conversion system based on six/five-leg reconfigurable converter. Electric Power Systems Research, 2016, 137: 104–112

    Article  Google Scholar 

  15. Li X, Dusmez S, Akin B, et al. A new active fault-tolerant SVPWM strategy for single-phase faults in three-phase multilevel converters. IEEE Transactions on Industrial Electronics, 2014, 62(6): 3955–3965

    Article  Google Scholar 

  16. Restrepo J, Berzoy A, Ginart A, et al. Switching strategies for fault tolerant operation of single DC-link dual converters. IEEE Transactions on Power Electronics, 2012, 27(2): 509–518

    Article  Google Scholar 

  17. Wang Z, Chen J, Cheng M, et al. Fault-tolerant control of paralleled-voltage-source-inverter-fed PMSM drives. IEEE Transactions on Industrial Electronics, 2015, 62(8): 4749–4760

    Article  Google Scholar 

  18. Chowdhury S, Wheeler P, Patel C, et al. A multilevel converter with a floating bridge for open-end winding motor drive applications. IEEE Transactions on Industry Applications, 2016, 63(9): 5366–5375

    Google Scholar 

  19. An Q, Liu J, Peng Z, et al. Dual-space vector control of open-end winding permanent magnet synchronous motor drive fed by dual inverter. IEEE Transactions on Power Electronics, 2016, 31(12): 8329–8342

    Google Scholar 

  20. Jin S, Shi L, Zhu L, et al. Dual two-level converters based on direct power control for an open-winding brushless doubly-fed reluctance generator. IEEE Transactions on Industry Applications, 2017, 53(4): 3898–3906

    Article  Google Scholar 

  21. Chaal H, Jovanovic M. Power control of brushless doubly-fed reluctance drive and generator systems. Renewable Energy, 2012, 37(1): 419–425

    Article  Google Scholar 

  22. Zhao W, Wu B, Zhu Q. Fault-tolerant direct thrust force control for a dual inverter fed open-end winding linear vernierpermanent-magnet motor using improved SVPWM. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7458–7467

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51537007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, S., Shi, L., Ademi, S. et al. Fault-tolerant control of an open-winding brushless doubly-fed wind power generator system with dual three-level converter. Front. Energy 17, 149–164 (2023). https://doi.org/10.1007/s11708-020-0711-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11708-020-0711-2

Keywords

Navigation