Skip to main content
Log in

Spatiotemporal Response of Rangeland NPP to Drought in Central Iran based on SPDI Index

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

This study explored the spatiotemporal variability of rangeland NPP in response to drought in Chaharmahal and Bakhtiari province, Iran, from 2000 to 2016 using the Carnegie Ames Stanford Application (CASA) model and Standardized Palmer Drought Index (SPDI). The spatial distribution of NPP and Light Use Efficiency(LUE) values, especially during dry years, indicated a larger dwindling rate for annual NPP and LUE in poor and very poor conditions compared to fair and good rangelands. During the nine-year drought period (2008–2016), NPP decreased across all rangelands, with the highest average of 5.14 g C/(m2.a) and maximum of 6.42 g C/(m2.a) in annual grass-annual forb and the lowest of 0.95 g C/(m2.a) in the Daphne-Astragalus type. The correlation between SPDI and NPP varied from R2 > 0.85 (p < 0.001) and R2 < 0.1 (p > 0.01) among the rangeland types. The highest and the lowest sensitivity to drought were observed in the annual plants and shrublands, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Alamdari, P., Nematollahi, O., and Alemrajabi, A.A., Solar energy potentials in Iran: a review, Renewable Sustainable Energy Rev., 2013, vol. 21, pp. 778–788.

    Article  Google Scholar 

  2. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M., Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper no. 56, Rome: UN Food Agric. Org., 1998.

  3. Bannari, A., Pachecl, A., Staenz, K., McNairn, H., and Omari, K., Estimating and mapping crop residues cover on agricultural lands using hyper spectral and IKONOS data, Remote Sens. Environ., 2006, vol. 104, pp. 447–459.

    Article  Google Scholar 

  4. Bao, G., Bao, Y., Qin, Z., Xin, X., Bao, Y., Bayarsaikan, S., Zhou, Y., and Chuntai, B., Modeling net primary productivity of terrestrial ecosystems in the semi-arid climate of the Mongolian Plateau using LSWI-based CASA ecosystem model, Appl. Earth Obs. Geoinf., 2016, vol. 46, pp. 84–93.

    Article  Google Scholar 

  5. Chen, G., Tian, H., Zhang, C., Liu, M., Ren,W., Zhu, W., Chappelka, A.H., Prior, S.A., and Lockaby, G.B., Drought in the Southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage, Clim. Change, 2012, vol. 114, pp. 379–397.

    Article  CAS  Google Scholar 

  6. Chen, T., Werf, G.R., Jeu, R.A., and Wang, G.A., global analysis of the impact of drought on net primary productivity, Hydrol. Earth Syst. Sci., 2013, vol. 17, pp. 3885–3894.

    Article  Google Scholar 

  7. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Core Writing Team, Pachauri, R.K and Reisinger, A., Eds., Geneva: IPCC, 2007.

  8. Cramer, W., Kicklighter, D., Bondeau, A., Iii, B.M., Churkina, G., Nemry, B., Ruimy, A., Schloss, A., and Intercomparison, T., Comparing global models of terrestrial net primary productivity (NPP): overview and key results, Global Change Biol., 1999, vol. 5, pp. 1–15.

    Article  Google Scholar 

  9. Field, C.B., Randerson, J.T., and Malmstrom, C.M., Global net primary production: combining ecology and remote sensing. Remote Sens. Environ., 1995, no. 51, pp. 74–88.

  10. Fischer, D., Chapman, S., Classen, A.T., Gehring, C., Grady, K., Schweitzer, J., and Whitham, T., Plant genetic effects on soils under climate change, Plant Soil, 2014, vol. 379, pp. 1–19.

    Article  CAS  Google Scholar 

  11. Fridley, J.D., Lynn, J.S, Grime, J.P., et al., Longer growing seasons shift grassland vegetation towards more-productive species, Nat. Clim. Change, 2016, vol. 6, pp. 865–868.

    Article  Google Scholar 

  12. Hadian, F., Jafari, R., Bashari H., Tarkesh, M., and Clarke, K.D., Estimation of spatial and temporal changes in net primary production based on Carnegie Ames Stanford Approach (CASA) model in semi-arid rangelands of Semirom County, Iran, J. Arid Land, 2019, vol. 11, no. 4, pp. 477–494.

    Article  Google Scholar 

  13. Houghton, R.A. and Goodale, C.L., Effects of land-use change on the carbon balance of terrestrial ecosystems, Ecosyst. Land Use Change, 2004, vol. 153, pp. 85–98.

    Article  Google Scholar 

  14. Hua, L.Z., Liu, H., Zhang, X.L., Zheng, Y., Man, W., and Yin, K., Estimation terrestrial net primary productivity based on CASA Model: a case study in Minnan urban agglomeration, China, IOP Conf. Ser.: Earth Environ. Sci., 2014, vol. 17, no. 1, art. ID 012153.

  15. Hurteau, M.D. and Brooks, M.L., Short- and long-term effects of fire on carbon in US dry temperate forest systems, Bioscience, 2011, vol. 61, no. 2, pp. 139–146.

    Article  Google Scholar 

  16. Jentsch, A., Kreyling, J., and Beierkuhnlein, C., A new generation of climate-change experiments: events, not trends, Front. Ecol. Environ., 2007, vol. 5, pp. 365–374.

    Article  Google Scholar 

  17. Jiang, C., Wu. Z., Cheng, J., Yu, Q., and Rao, X., Impacts of urbanization on net primary productivity in the Pearl River Delta, China, Int. J. Plant Prod., 2015, vol. 9, pp. 581–598.

    Google Scholar 

  18. Kaminski, T., Knorr, W., Rayner, P., and Heimann, M., Assimilating atmospheric data into a terrestrial biosphere model: a case study of the seasonal cycle, Global Biogeochem. Cycles, 2002, vol. 16, no. 4, pp. 1–14.

    Article  CAS  Google Scholar 

  19. Lai, C., Li, J., Wang, Z., Wu, X., Zeng, Z., Chen, X., Lian, Y., Yu, H., Wang, P., and Bai, X., Drought-induced reduction in net primary productivity across mainland China from 1982 to 2015, Remote Sens., 2018, vol. 10, no. 9, p. 1433.

    Article  Google Scholar 

  20. Lei, T., Wu, J., Li, X., Geng, G., Shao, C., Zhou, H., Wang, Q., and Liu, L.A., New framework for evaluating the impacts of drought on net primary productivity of grassland, Sci. Total Environ., 2015, vol. 536, pp. 161–172.

    Article  CAS  PubMed  Google Scholar 

  21. Liang, W., Yang, Y., Fan, D., Guan, H., Zhang, T., Long, D., Zhou, Y., and Bai, D., Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010, Agric. For. Meteorol., 2015, vol. 204, pp. 22–36.

    Article  Google Scholar 

  22. Li., A., Bian, J., Lei, G., and Huang, C., Estimating the maximal light use efficiency for different vegetation through the CASA model combined with time-series remote sensing data and ground measurements, Remote Sens., 2012, vol. 4, no. 12, pp. 3857–3876.

    Article  Google Scholar 

  23. Li, J., Wang, Z., Lai, C., Wu, X., Zeng, Z. and Chen, X., Response of net primary production to land use and land cover change in mainland China since the late 1980s, Sci. Total Environ., 2018, vol. 639, pp. 237–247.

    Article  CAS  PubMed  Google Scholar 

  24. Li, W., Huang, H.-Z., Zhang, Z.-N., and Wu, G.-L., Effects of grazing on the soil properties and C and N storage in relation to biomass allocation in an alpine meadow, J. Soil Sci. Plant Nutr., 2011, vol. 11, no. 4, pp. 27–39.

    Article  CAS  Google Scholar 

  25. Limones, N., El estudio de la sequíahidrológicaen el mediterráneoespañol. Propuesta de aplicacióndelíndiceestandarizado de sequíapluviométrica a las aportacioneshídricas, PhD Thesis, Seville: Univ. de Sevilla, 2013.

  26. Liu, S., Bliss, N., Sundquist, E., and Huntington, T.G., Modeling carbon dynamics in vegetation and soil under the impact of soil erosion and deposition, Global Biogeochem. Cycles, 2003, vol. 17, pp. 1–24.

    Article  CAS  Google Scholar 

  27. Ma, M., Ren, L., Yuan, F., Jiang, S., Liu, Y., Kong, H., and Gong, L., A new standardized Palmer drought index for hydro-meteorological use, Hydrol. Process., 2014, vol. 28, no. 23, pp. 5645–5661.

    Article  Google Scholar 

  28. Mao, D., Wang, Z., Li, L., and Ma, W., spatiotemporal dynamics of grassland aboveground net primary productivity and its association with climatic pattern and changes in Northern China, Ecol. Indic., 2014, vol. 41, pp. 40–48.

    Article  Google Scholar 

  29. McKee, T.B., Doesken, N.J., and Kleist, J., The relationship of drought frequency and duration to time scales, Proc. Eighth Conf. on Applied Climatology, January 17–22, 1993, Anaheim, 1993, 179–184.

  30. Modarres, R. and Silva, V.D.P.R., Rainfall trends in arid and semi-arid regions of Iran, J. Arid Environ., 2007, vol. 70, no. 2, pp. 344–355.

    Article  Google Scholar 

  31. Nemani, R.R., Keeling, C.D., Hashimoto, H., Jolly, W.M., Piper, S.C., and Tucker, C.J., Climate-driven increases in global terrestrial net primary production from 1982 to 1999, Science, 2003, vol. 300, pp. 1560–1563.

    Article  CAS  PubMed  Google Scholar 

  32. Olofsson, J. and Hickler, T., Effects of human land-use on the global carbon cycle during the last 6,000 years, Veg. Hist. Archaeobot., 2008, vol. 17, no. 5, pp. 605–615.

    Article  Google Scholar 

  33. Pei, F., Li, X., Liu, X., and Lao, C., Assessing the impacts of droughts on net primary productivity in China, J. Environ. Manage., 2013, vol. 114, pp. 362–371.

    PubMed  Google Scholar 

  34. Peng, J., Shen, H., Wu, W., Liu, Y., and Wang, Y., Net primary productivity (NPP) dynamics and associated urbanization driving forces in metropolitan areas: a case study in Beijing city, China, Landscape Ecol., 2016, vol. 31, pp. 1077–1092.

    Article  Google Scholar 

  35. Potter, C.S., Terrestrial biomass and the effects of deforestation on the global carbon cycle: results from a model of primary production using satellite observations, BioScience, 1999, vol. 49, no. 10, pp. 769–778.

    Article  Google Scholar 

  36. Potter, C., and Klooster, S., Genovese, V., and Hiatt, C., Forest production predicted from satellite image analysis for the Southeast Asia region, Carbon Balance Manage., 2013, vol. 8, no. 9, pp. 1–6.

    Article  Google Scholar 

  37. Ren, Z., Zhu, H., Shi, H., and Liu, X., Spatio-temporal distribution pattern of vegetation net primary productivity and its responseto climate change in Buryatiya Republic, Russia, J. Resour. Ecol., 2011, vol. 2, pp. 257–265.

    Google Scholar 

  38. Saki, M., Soltani, S., Tarkesh Esfahani, M., and Jafari, R., Evaluating the variability of ANPP in central Iranian arid and semi-arid rangelands using CASA model and its relationship with climatic factors, Geosci. J., 2019, vol. 23, no. 3, pp. 531–545.

    Article  CAS  Google Scholar 

  39. Saleska, S.R., Didan, K., Huete, A.R., and Da Rocha, H.R., Amazon forests green-up during 2005 drought, Science, 2007, vol. 318, no. 5850, pp. 612–619.

    Article  CAS  PubMed  Google Scholar 

  40. Sellers, P., Meeson, B., Hall, F., Asrar, G., Murphy, R., Schiffer, R., Bretherton, F., Dickinson, R., Ellingson, R., and Field, C., Remote sensing of the land surface for studies of global change: Models, algorithms and experiments, Remote Sens. Environ., 1995, vol. 51, pp. 3–26.

    Article  Google Scholar 

  41. Shi, Z., Thomey, M.L., Mowll, W., Litvak, M., Brunsell, N.A., Collins, S.L., Pockman, W.T., Smith, M.D., and Knapp, A.K., Differential effects of extreme drought on production and respiration:Synthesis and modeling analysis, Biogeosci. Discuss., 2013, vol. 10, pp. 16043–16074.

    Article  Google Scholar 

  42. Sinclair, T.R. and Muchow, R.C., Radiation use efficiency, in Advances in Agronomy, Amsterdam: Elsevier, 1999, vol. 65, pp. 215-265.

    Google Scholar 

  43. Soltani, S., Yaghmaei, L., Khodagholi, M., and Saboohi, R., Bioclimatic classification of Chahar-Mahal & Bakhtiari province using multivariate statistical methods, J. Water Soil Sci., Isfahan Univ. Technol., 2011, vol. 14, no. 54, pp. 53–68.

    Google Scholar 

  44. Soltani, S., Saboohi, R., and Yaghmaei, L., Rainfall and rainy days trend in Iran, Clim. Change, 2012, vol. 110, nos. 1–2, pp. 187–213.

    Article  Google Scholar 

  45. Sun, B., Zhao, H., and Wang, X., Effects of drought on net primary productivity: roles of temperature, drought intensity, and duration, Chin. Geogr. Sci., 2016, vol. 26, no. 2, pp. 270–282.

    Article  Google Scholar 

  46. Throop, H.L., Reichmann, L.G., Sala, O.E., and Archer, S.R., Response of dominant grass and shrub species to water manipulation: an ecophysiological basis for shrub invasion in a Chihuahuan Desert grassland, Oecologia, 2012, vol. 169, no. 2, pp. 373–383.

    Article  PubMed  Google Scholar 

  47. Valencia, R.J., Escobar, L.G., Celmi, G., Gomez, H.J., Orellana, L., and Torres, A.F., Characterization and management strategies of drought events in an arid basin in the Peruvian Andes, Rev. Invest., (Arequipa), 2015, vol. 6, pp. 45–76.

  48. Wang, W., Wang, J., Liu, X., Zhou, G., and Yan, J., Decadal drought de-accelerated the increasing trend of annual net primary production in tropical or subtropical forests in southern China, Sci. Rep., 2016, vol. 6, p. 28640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xiao, J., Zhuang, Q., Liang, E., Shao, X., McGuire, A.D., Moody, A., Kicklighter, D.W., and Melillo, J.M., Twentieth-century droughts and their impacts on terrestrial carbon cycling in China, Earth Interact., 2009, vol.13, no. 10, pp. 1–31.

    Article  Google Scholar 

  50. Yaghmaei, L., Soltani, S., Jafari, R., Bashari, H., and Jahanbazi, H., An investigation on impact of drought on rangeland and forest vegetation changes in Chaharmahal & Bakhtiari province using MODIS satellite data, Iranian J. Range For. Prod., 2015, vol. 15, no. 29, pp. 91–108.

    Google Scholar 

  51. Yan, G., Wu, Z., Li, D., and Xiao, H., A comparative frequency analysis of three standardized drought indices in the Poyang Lake basin, China, Nat. Hazards, 2018, vol. 91, no. 1, pp. 353–374.

    Article  Google Scholar 

  52. Yu, B. and Chen, F., The global impact factors of net primary production in different land cover types from 2005 to 2011, SpringerPlus, 2016, vol. 5, no. 1, p. 1235.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Yu, D., Shi, P., Shao, H., Zhu, W., and Pan, Y., Modeling net primary productivity of terrestrial ecosystems in East Asia based on an improved CASA ecosystem model, Int. J. Remote Sens., 2009, vol. 30, no. 18, pp. 4851–4866.

    Article  Google Scholar 

  54. Yuan, J., Niu, Z., and Wang, C., Vegetation NPP distribution based on MODIS data and CASA model—A case study of northern Hebei province, Chin. Geogr. Sci., 2006, vol.16, pp. 334–341.

    Article  Google Scholar 

  55. Zhang, C., Tian, H., Chen, G., Chappelka, A., Xu, X., Ren, W., Hui. D., Liu, M., Lu, C., Pan, S., and Lockaby, G., Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States, Environ. Pollut., 2012, vol. 164, pp. 89–101.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, M., Lai, R., Zhao, Y., Jiang, W., and Chen, Q., Estimating net primary production of natural grassland and its spatio-temporal distribution in China, Sci. Total Environ., 2016, vol. 553, pp. 184–195.

    Article  CAS  PubMed  Google Scholar 

  57. Zika, M. and Erb, K.H., The global loss of net primary production resulting from human-induced soil degradation in drylands, Ecol. Econ., 2009, vol. 69, no. 2, pp. 310–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Jafari.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leila Yaghmaei, Koupaei, S.S. & Jafari, R. Spatiotemporal Response of Rangeland NPP to Drought in Central Iran based on SPDI Index. Contemp. Probl. Ecol. 13, 694–707 (2020). https://doi.org/10.1134/S1995425520060141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520060141

Keywords:

Navigation