Skip to main content

Advertisement

Log in

Understanding the limitations of current RFMO climate change adaptation strategies: the case of the IATTC and the Eastern Pacific Ocean

  • Original Paper
  • Published:
International Environmental Agreements: Politics, Law and Economics Aims and scope Submit manuscript

Abstract

While Regional Fisheries Management Organizations (RFMOs) face many challenges in their pursuit of sustainable resource development, climate change is among the most pressing and least addressed. Research has identified a host of expected or ongoing physical, biological, ecological, and social impacts of climate change on the marine environment, creating a strong climate change adaptation imperative for RFMOs. Through a case study of the Inter-American Tropical Tuna Commission (IATTC), we describe two serious limitations of current RFMO climate change adaptation strategies: (1) a weakened efficacy of resource management and conservation policies caused by viewing climate change as a general climate stressor rather than a unique environmental challenge, and (2) a reliance on incremental policy reform, problematic because it may not enable a pace or scale of policy change proportional to the sustainable development challenges created by a rapidly changing ocean. We discuss the benefits and drawbacks of incrementalism and outline potential solutions to the environmental and structural challenges facing the IATTC and other RFMOs, including the concept of adaptation pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, E. H., Perry, A. L., Badjeck, M., Adger, W., Brown, K., Conway, D., et al. (2009). Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries, 10(2), 173–196.

    Google Scholar 

  • Axelrod, M. (2011). Climate change and global fisheries management: linking issues to protect ecosystems or to save political interests? Global Environmental Politics, 11(3), 64–84.

    Google Scholar 

  • Behrenfeld, M. J., O’Malley, R., Siegel, D. A., McClain, C. R., Sarmiento, J., Feldman, G. C., et al. (2006). Climate-driven trends in contemporary ocean productivity. Nature, 444(7120), 752–755.

    CAS  Google Scholar 

  • Bell, J. D., Ganachaud, A., Gehrke, P. C., Griffiths, S. P., Hobday, A. J., Hoegh-Guldberg, O., et al. (2013). Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nature Climate Change, 3(6), 591.

    Google Scholar 

  • Brander, K. M. (2007). Global fish production and climate change. Proceedings of the National Academy of Sciences, 104(50), 19709–19714.

    CAS  Google Scholar 

  • Brander, K. M. (2010). Impacts of climate change on fisheries. Journal of Marine Systems, 79(3), 389–402.

    Google Scholar 

  • Brander, K. M. (2015). Improving the reliability of fishery predictions under climate change. Current Climate Change Reports, 1(1), 40–48.

    Google Scholar 

  • Britten, G. L., Dowd, M., & Worm, B. (2016). Changing recruitment capacity in global fish stocks. Proceedings of the National Academy of Sciences, 113(1), 134–139.

    CAS  Google Scholar 

  • Bromhead, D., Scholey, V., Nicol, S., Margulies, D., Wexler, J., Stein, M., et al. (2015). The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus albacares). Deep Sea Research Part II: Topical Studies in Oceanography, 113, 268–279.

    CAS  Google Scholar 

  • Brooks, C. M. (2013). Competing values on the Antarctic high seas: CCAMLR and the challenge of marine-protected areas. The Polar Journal, 3(2), 277–300.

    Google Scholar 

  • Brooks, C. M., Crowder, L. B., Curran, L. M., Dunbar, R. B., Ainley, D. G., Dodds, K. J., Gjerde, K. M. & Sumaila, U. R. (2016). Science-based management in decline in the Southern Ocean. Science, 354(6309), 185–187.

    CAS  Google Scholar 

  • Brooks, C. M., Ainley, D. G., Abrams, P. A., Dayton, P. K., Hofman, R. J., Jacquet, J., et al. (2018). Antarctic fisheries: Factor climate change into their management. Nature, 558(7709), 177–180.

    CAS  Google Scholar 

  • Butchart, S. H., Walpole, M., Collen, B., Van Strien, A., Scharlemann, J. P., Almond, R. E., et al. (2010). Global biodiversity: Indicators of recent declines. Science, 328(5982), 1164–1168.

    CAS  Google Scholar 

  • Byrne, M. (2011). Impact of ocean warming and ocean acidification on marine invertebrate life history stages: Vulnerabilities and potential for persistence in a changing ocean. Oceanography and Marine Biology: An Annual Review, 49, 1–42.

    Google Scholar 

  • Cheng, L., Abraham, J., Hausfather, Z., & Trenberth, K. E. (2019). How fast are the oceans warming? Science, 363(6423), 128–129.

    CAS  Google Scholar 

  • Cheung, W. W., Close, C., Lam, V., Watson, R., & Pauly, D. (2008). Application of macroecological theory to predict effects of climate change on global fisheries potential. Marine Ecology Progress Series, 365, 187–197.

    Google Scholar 

  • Cheung, W. W., Jones, M. C., Reygondeau, G., Stock, C. A., Lam, V. W., & Frölicher, T. L. (2016). Structural uncertainty in projecting global fisheries catches under climate change. Ecological Modelling, 325, 57–66.

    CAS  Google Scholar 

  • Cheung, W. W., Lam, V. W., Sarmiento, J. L., Kearney, K., Watson, R. E. G., Zeller, D., et al. (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16(1), 24–35.

    Google Scholar 

  • Cheung, W. W., Watson, R., & Pauly, D. (2013). Signature of ocean warming in global fisheries catch. Nature, 497(7449), 365–368.

    CAS  Google Scholar 

  • Cinner, J. E., McClanahan, T., Graham, N. A., Pratchett, M. S., Wilson, S. K., & Raina, J. B. (2009). Gear-based fisheries management as a potential adaptive response to climate change and coral mortality. Journal of Applied Ecology, 46(3), 724–732.

    Google Scholar 

  • de Bruyn, P., Murua, H., & Aranda, M. (2013). The Precautionary approach to fisheries management: How this is taken into account by Tuna regional fisheries management organisations (RFMOs). Marine Policy, 38, 397–406.

    Google Scholar 

  • Delworth, T. L., Zeng, F., Vecchi, G. A., Yang, X., Zhang, L., & Zhang, R. (2016). The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nature Geoscience, 9(7), 509.

    CAS  Google Scholar 

  • Del Raye, G., & Weng, K. C. (2015). An aerobic scope-based habitat suitability index for predicting the effects of multi-dimensional climate change stressors on marine teleosts. Deep Sea Research Part II: Topical Studies in Oceanography, 113, 280–290.

    Google Scholar 

  • Desombre, E. (1999). Tuna fishing and common pool resources. In J. S. Barkin & G. E. Shambaugh (Eds.), Anarchy and the environment: The international relations of common pool resources (pp. 51–69). New York: State University of New York Press.

    Google Scholar 

  • Doney, S. C., Ruckelshaus, M., Duffy, J. E., Barry, J. P., Chan, F., English, C. A., et al. (2012). Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4, 11–37.

    Google Scholar 

  • Dueri, S., Bopp, L., & Maury, O. (2014). Projecting the impacts of climate change on skipjack tuna abundance and spatial distribution. Global Change Biology, 20(3), 742–753.

    Google Scholar 

  • Dueri, S., Guillotreau, P., Jiménez-Toribio, R., Oliveros-Ramos, R., Bopp, L., & Maury, O. (2016). Food security or economic profitability? Projecting the effects of climate and socioeconomic changes on global skipjack tuna fisheries under three management strategies. Global Environmental Change, 41, 1–12.

    Google Scholar 

  • Dunstan, P. K., Moore, B. R., Bell, J. D., Holbrook, N. J., Oliver, E. C., Risbey, J., et al. (2018). How can climate predictions improve sustainability of coastal fisheries in Pacific Small-Island Developing States? Marine Policy, 88, 295–302.

    Google Scholar 

  • Everson, I. (2017). Designation and management of large-scale MPAs drawing on the experiences of CCAMLR. Fish and Fisheries, 18(1), 145–159.

    Google Scholar 

  • Frainer, A., Primicerio, R., Kortsch, S., Aune, M., Dolgov, A. V., Fossheim, M., et al. (2017). Climate-driven changes in functional biogeography of Arctic marine fish communities. Proceedings of the National Academy of Sciences, 114(46), 12202–12207.

    CAS  Google Scholar 

  • Frommel, A. Y., Margulies, D., Wexler, J. B., Stein, M. S., Scholey, V. P., Williamson, J. E., et al. (2016). Ocean acidification has lethal and sub-lethal effects on larval development of yellowfin tuna, Thunnus albacares. Journal of Experimental Marine Biology and Ecology, 482, 18–24.

    Google Scholar 

  • Gamito, R., Costa, M. J., & Cabral, H. N. (2015). Fisheries in a warming ocean: trends in fish catches in the large marine ecosystems of the world. Regional Environmental Change, 15(1), 57–65.

    Google Scholar 

  • Grafton, R. Q. (2010). Adaptation to climate change in marine capture fisheries. Marine Policy, 34(3), 606–615.

    Google Scholar 

  • Green, A. L., Fernandes, L., Almany, G., Abesamis, R., McLeod, E., Aliño, P. M., et al. (2014). Designing marine reserves for fisheries management, biodiversity conservation, and climate change adaptation. Coastal Management, 42(2), 143–159.

    Google Scholar 

  • Hanich, Q., Campbell, B., Bailey, M., & Molenaar, E. (2015). Research into fisheries equity and fairness—Addressing conservation burden concerns in transboundary fisheries. Marine Policy, 51, 302–304.

    Google Scholar 

  • Harrison, D. E., & Chiodi, A. M. (2015). Multi-decadal variability and trends in the El Nino-Southern oscillation and tropical pacific fisheries implications. Deep-Sea Research Part II-Topical Studies in Oceanography, 113, 9–21.

    Google Scholar 

  • Heenan, A., Pomeroy, R., Bell, J., Munday, P. L., Cheung, W., Logan, C., et al. (2015). A climate-informed, ecosystem approach to fisheries management. Marine Policy, 57, 182–192.

    Google Scholar 

  • Hoegh-Guldberg, O. (2011). Coral reef ecosystems and anthropogenic climate change. Regional Environmental Change, 11(1), 215–227.

    Google Scholar 

  • Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the World’s marine ecosystems. Science, 328(5985), 1523–1528.

    CAS  Google Scholar 

  • Holling, C. S. (1978). Adaptive environmental assessment and management. New York: Wiley.

    Google Scholar 

  • Hurd, I. (2012). Almost saving whales: The ambiguity of success at the International Whaling Commission. Ethics & International Affairs, 26(1), 103–112.

    Google Scholar 

  • IATTC. (2003). Convention for the Strengthening of the Inter-American Tropical Tuna Commission Established by the 1949 Convention between the United States of America and the Republic of Costa Rica (Antigua Convention).

  • IATTC. (2017). IATTC Scientific Advisory Committee—Eight Meeting Report of the Meeting. https://www.iattc.org/Meetings/Meetings2017/SAC-08/PDFs/Docs/_English/SAC-08-RPT_8th-Meeting-of-the-Scientific-Advisory-Committee.pdf. Accessed 10 July 2019.

  • IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services. Available at: https://cdn2.hubspot.net/hubfs/4783129/Summary%20for%20Policymakers%20IPBES%20Global%20Assessment.pdf?__hstc=&__hssc=&hsCtaTracking=91fd55c1-7918-40d1-a145-73e8dab568a9%7C67bf054a-fcc7-448e-9235-42416b2b6e88. Accessed 10 July 2019.

  • IPCC. (2014). Climate Change 2014: Synthesis Report Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, RK Pachauri and LA Meyer (eds)] IPCC, Geneva, Switzerland, 151 pp.

  • Juan-Jordá, M., Mosqueira, I., Cooper, A. B., Freire, J., & Dulvy, N. K. (2011). Global population trajectories of tunas and their relatives. PNAS, 108, 20650–20655.

    Google Scholar 

  • Juan-Jordá, M., Murua, H., Arrizabalaga, H., Dulvy, N. K., & Restrepo, V. (2018). Report card on ecosystem-based fisheries management in tuna regional fisheries management organizations. Fish and Fisheries, 19(2), 321–339.

    Google Scholar 

  • Kell, L. T., Pilling, G. M., & O'Brien, C. M. (2005). Implications of climate change for the management of North Sea cod (Gadus morhua). ICES Journal of Marine Science, 62(7), 1483–1491.

    Google Scholar 

  • Kurihara, H. (2008). Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Marine Ecology Progress Series, 373, 275–284.

    CAS  Google Scholar 

  • Lehodey P., Hampton J., Brill R.W., Nicol S., Senina I., Calmettes B., et al. (2011). Vulnerability of oceanic fisheries in the tropical Pacific to climate change. In: J. Bell, J. E. Johnson and A. J. Hobday (Eds.), Vulnerability of tropical pacific fisheries and aquaculture to climate change. Secretariat of the Pacific Community, New Caledonia.

  • Lehodey, P., Senina, I., Calmettes, B., Hampton, J., & Nicol, S. (2013). Modelling the impact of climate change on Pacific skipjack tuna population and fisheries. Climatic Change, 119(1), 95–109.

    Google Scholar 

  • Lehodey, P., Senina, I., Nicol, S., & Hampton, J. (2015). Modelling the impact of climate change on south pacific albacore tuna. Deep-Sea Research Part II-Topical Studies in Oceanography, 113, 246–259.

    CAS  Google Scholar 

  • Lehodey, P., Senina, I., Sibert, J., Bopp, L., Calmettes, B., Hampton, J., et al. (2010). Preliminary forecasts of Pacific bigeye tuna population trends under the A2 IPCC scenario. Progress in Oceanography, 86(1–2), 302–315.

    Google Scholar 

  • Lindblom, C. E. (1959). The science of muddling through. Public Administration Review, 19(2), 79–88.

    Google Scholar 

  • Ling, S. D., & Johnson, C. R. (2012). Marine reserves reduce risk of climate-driven phase shift by reinstating size-and habitat-specific trophic interactions. Ecological Applications, 22(4), 1232–1245.

    CAS  Google Scholar 

  • McCauley, D. J., Pinsky, M. L., Palumbi, S. R., Estes, J. A., Joyce, F. H., & Warner, R. R. (2015). Marine defaunation: Animal loss in the global ocean. Science, 347(6219), 1255641.

    Google Scholar 

  • McLain, R. J., & Lee, R. G. (1996). Adaptive management: Promises and pitfalls. Environmental management, 20(4), 437–448.

    CAS  Google Scholar 

  • McLeod, E., Salm, R., Green, A., & Almany, J. (2009). Designing marine protected area networks to address the impacts of climate change. Frontiers in Ecology and the Environment, 7(7), 362–370.

    Google Scholar 

  • McIlgorm, A., Hanna, S., Knapp, G., Le Floc’H, P., Millerd, F., & Pan, M. (2010). How will climate change alter fishery governance? Insights from seven international case studies. Marine Policy, 34(1), 170–177.

    Google Scholar 

  • Merino, G., Barange, M., Blanchard, J. L., Harle, J., Holmes, R., Allen, I., et al. (2012). Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Global Environmental Change, 22(4), 795–806.

    Google Scholar 

  • Mislan, K. A. S., Deutsch, C. A., Brill, R. W., Dunne, J. P., & Sarmiento, J. L. (2017). Projections of climate driven changes in tuna vertical habitat based on species-specific differences in blood oxygen affinity. Global Change Biology, 23(10), 4019–4028.

    CAS  Google Scholar 

  • Muhling, B. A., Lee, S.-K., Lamkin, J. T., & Liu, Y. (2011). Predicting the effects of climate change on bluefin tuna (Thunnus thynnus) spawning habitat in the Gulf of Mexico. ICES Journal of Marine Science, 68, 1051–1062.

    Google Scholar 

  • Munang, R., Thiaw, I., Alverson, K., Mumba, M., Liu, J., & Rivington, M. (2013). Climate change and ecosystem-based adaptation: A new pragmatic approach to buffering climate change impacts. Current Opinion in Environmental Sustainability, 5(1), 67–71.

    Google Scholar 

  • Narita, D., Rehdanz, K., & Tol, R. S. (2012). Economic costs of ocean acidification: A look into the impacts on global shellfish production. Climatic Change, 113(3–4), 1049–1063.

    Google Scholar 

  • Olson, R. J., Duffy, L. M., Kuhnert, P. M., Galvan-Magana, F., Bocanegra-Castillo, N., & Alatorre-Ramirez, V. (2014). Decadal diet shift in yellowfin tuna Thunnus albacares suggests broad-scale food web changes in the eastern tropical Pacific Ocean. Marine Ecology Progress Series, 497, 157–178.

    Google Scholar 

  • Ojea, E., Pearlman, I., Gaines, S. D., & Lester, S. E. (2017). Fisheries regulatory regimes and resilience to climate change. Ambio, 46(4), 399–412.

    Google Scholar 

  • Pauly, D., & Zeller, D. (2016). Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Communications, 7, pncomms10244.

    Google Scholar 

  • Payne, M. R., Barange, M., Cheung, W. W., MacKenzie, B. R., Batchelder, H. P., Cormon, X., et al. (2015). Uncertainties in projecting climate-change impacts in marine ecosystems. ICES Journal of Marine Science, 73(5), 1272–1282.

    Google Scholar 

  • Pentz, B., & Klenk, N. (2017). The ‘responsiveness gap’ in RFMOs: The critical role of decision-making policies in the fisheries management response to climate change. Ocean & Coastal Management, 145, 44–51.

    Google Scholar 

  • Pentz, B., Klenk, N., Ogle, S., & Fisher, J. A. D. (2018). Can regional fisheries management organizations (RFMOs) manage resources effectively during climate change? Marine Policy, 92, 13–20.

    Google Scholar 

  • Pereira, H. M., Leadley, P. W., Proença, V., Alkemade, R., Scharlemann, J. P., Fernandez-Manjarrés, J. F., et al. (2010). Scenarios for global biodiversity in the 21st century. Science, 330(6010), 1496–1501.

    CAS  Google Scholar 

  • Pinsky, M. L., & Mantua, N. J. (2014). Emerging adaptation approaches for climate-ready fisheries management. Oceanography, 27(4), 146–159.

    Google Scholar 

  • Pinsky, M. L., Reygondeau, G., Caddell, R., Palacios-Abrantes, J., Spijkers, J., & Cheung, W. W. (2018). Preparing ocean governance for species on the move. Science, 360(6394), 1189–1191.

    CAS  Google Scholar 

  • Quay, R. (2010). Anticipatory governance: A tool for climate change adaptation. Journal of the American Planning Association, 76(4), 496–511.

    Google Scholar 

  • Rayfuse, R. (2018). Climate change and antarctic fisheries: Ecosystem management in CCAMLR. Ecology LQ, 45, 53.

    Google Scholar 

  • Rayfuse, R. (2019). Addressing climate change impacts in regional fisheries management organizations. In R. Caddell & E. J. Molenaar (Eds.), Strengthening international fisheries law in an era of changing oceans (pp. 247–268). Oxford: Hart Publishing.

    Google Scholar 

  • Rice, J. C., & Garcia, S. M. (2011). Fisheries, food security, climate change, and biodiversity: Characteristics of the sector and perspectives on emerging issues. ICES Journal of Marine Science, 68, 1343–1353.

    Google Scholar 

  • Risbey, J. S., Lewandowsky, S., Langlais, C., Monselesan, D. P., O’Kane, T. J., & Oreskes, N. (2014). Well-estimated global surface warming in climate projections selected for ENSO phase. Nature Climate Change, 4(9), 835.

    Google Scholar 

  • Roberts, C. M., O’Leary, B. C., McCauley, D. J., Cury, P. M., Duarte, C. M., Lubchenco, J., et al. (2017). Marine reserves can mitigate and promote adaptation to climate change. Proceedings of the National Academy of Sciences, 114(24), 6167–6175.

    CAS  Google Scholar 

  • Robinson, L. M., Hobday, A. J., Possingham, H. P., & Richardson, A. J. (2015). Trailing edges projected to move faster than leading edges for large pelagic fish habitats under climate change. Deep-Sea Research Part II: Topical Studies in Oceanography, 113, 225–234.

    Google Scholar 

  • Saunders, M. I., Leon, J. X., Callaghan, D. P., Roelfsema, C. M., Hamylton, S., Brown, C. J., et al. (2014). Interdependency of tropical marine ecosystems in response to climate change. Nature Climate Change, 4(8), 724–729.

    Google Scholar 

  • Schindler, D. E., & Hilborn, R. (2015). Prediction, precaution, and policy under global change. Science, 347(6225), 953–954.

    CAS  Google Scholar 

  • Schultz, L., Folke, C., Österblom, H., & Olsson, P. (2015). Adaptive governance, ecosystem management, and natural capital. Proceedings of the National Academy of Sciences, 112(24), 7369–7374.

  • Sumaila, U. R., Lam, V. W. Y., Miller, D. D., Teh, L., Watson, R., Zeller, D., et al. (2015). Winners and losers in a world where the high seas is closed to fishing. Scientific Reports, 5, 8481. https://doi.org/10.1038/srep08481.

    Article  CAS  Google Scholar 

  • UN. (2015). Transforming our world: The 2030 agenda for sustainable development. A/RES/70/1.

  • UNFAO. (2018). The State of World Fisheries and Aquaculture 2018—Meeting the sustainable development goals. Rome Licence: CC BY-NC-SA 30 IGO.

  • Walters, C. J. (1986). Adaptive management of renewable resources. New York, NY: Macmillan Publishers Ltd.

    Google Scholar 

  • Walters, C. J., & Hilborn, R. (1978). Ecological optimization and adaptive management. Annual Review of Ecology and Systematics, 9(1), 157–188.

    Google Scholar 

  • Walther, G. R. (2010). Community and ecosystem responses to recent climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1549), 2019–2024.

    Google Scholar 

  • Wang, J., Chen, X., & Chen, Y. (2016). Spatio-temporal distribution of skipjack in relation to oceanographic conditions in the west-central Pacific Ocean. International Journal of Remote Sensing, 37(24), 6149–6164.

    Google Scholar 

  • Wernberg, T., Bennett, S., Babcock, R. C., de Bettignies, T., Cure, K., Depczynski, M., et al. (2016). Climate-driven regime shift of a temperate marine ecosystem. Science, 353(6295), 169–172.

    CAS  Google Scholar 

  • Wise, R. M., Fazey, I., Smith, M. S., Park, S. E., Eakin, H. C., Van Garderen, E. A., et al. (2014). Reconceptualising adaptation to climate change as part of pathways of change and response. Global Environmental Change, 28, 325–336.

    Google Scholar 

  • Woodworth-Jefcoats, P. A., Polovina, J. J., & Drazen, J. C. (2017). Climate change is projected to reduce carrying capacity and redistribute species richness in North Pacific pelagic marine ecosystems. Global Change Biology,23(3), 1000–1008.

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Pentz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pentz, B., Klenk, N. Understanding the limitations of current RFMO climate change adaptation strategies: the case of the IATTC and the Eastern Pacific Ocean. Int Environ Agreements 20, 21–39 (2020). https://doi.org/10.1007/s10784-019-09452-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10784-019-09452-9

Keywords

Navigation