Paper

Effects of packing particles on the partial discharge behavior and the electrical characterization of oxygen PBRs

, , , , and

Published 18 December 2020 © 2020 Hefei Institutes of Physical Science, Chinese Academy of Sciences and IOP Publishing
, , Citation Sijia NI et al 2021 Plasma Sci. Technol. 23 015405 DOI 10.1088/2058-6272/abc822

1009-0630/23/1/015405

Abstract

Packed-bed reactors (PBRs) hold great promise for environmental applications, but a deeper understanding of the behavior of plasma discharge within PBRs is required. To this end, a partial-discharge alternative equivalent circuit for PBRs was established in this work. Dielectric particles (glass beads or glass sand) were used to place focus on the effects of the particle size and shape on the partial discharge behavior of the oxygen PBRs. Some electrical characterizations were explored (e.g. the effective dielectric capacitance, partial discharge coefficient, and corrected burning voltage) that may differ from long-standing interpretations. The findings indicate that the suppressive effect of surface discharge on filament discharge is stronger with the decrease of the particle size. For partial discharge, the effective dielectric capacitance is always less than the dielectric capacitance. The corrected burning voltage and partial discharge tendency increase with the decrease of the particle size. As compared to an empty reactor, the average electric field in the PBR was found to be improved by 3–4 times, and the ozone energy efficiency and production were promoted by more than 20% and 15%, respectively. The plasma processing capacity can therefore be improved by choosing a relatively large size or a complex, irregularly-shaped packing material that is suitable for the discharge gap.

Export citation and abstract BibTeX RIS

Access this article

The computer you are using is not registered by an institution with a subscription to this article. Please choose one of the options below.

Login

IOPscience login

Find out more about journal subscriptions at your site.

Purchase from

Article Galaxy
CCC RightFind

Purchase this article from our trusted document delivery partners.

Make a recommendation

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

For corporate researchers we can also follow up directly with your R&D manager, or the information management contact at your company. Institutional subscribers have access to the current volume, plus a 10-year back file (where available).

10.1088/2058-6272/abc822