Skip to main content
Log in

Classification of Depressive Episodes Using Nighttime Data; a Multivariate and Univariate Analysis

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

Mental disorders like depression represent 28% of global disability. It affects around 7.5% percent of global disability. Depression is a common disorder that affects the state of mind, normal activities, emotions, and produces sleep disorders. It is estimated that approximately 50% of depressive patients suffering from sleep disturbances. In this paper, a data mining process to classify depressive and not depressive episodes during nighttime is carried out based on a formal method of data mining called Knowledge Discovery in Databases (KDD). KDD guides the process of data mining with stages well established: Pre-KDD, Selection, Pre-processing, Transformation, Data Mining, Evaluation, and Post-KDD. The dataset used for the classification is the DEPRESJON dataset, which contains the motor activity of 23 unipolar and bipolar depressed patients and 32 healthy controls. The classification is carried out with two different approaches; a multivariate and univariate analysis to classify depressive and non-depressive episodes. For the multivariate analysis, the Random Forest algorithm is implemented with a model construct of 8 features and, results of the classification are; specificity equal to 0.9927 and sensitivity equal to 0.9991. The univariate analysis shows that the maximum in time of the activity is the most descriptive characteristic of the model with 0.908 in accuracy for the classification of depressive episodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Organization, W.H., et al., Depression and other common mental disorders: global health estimates, Tech. Rep., World Health Organization, 2017.

    Google Scholar 

  2. Espinosa-Aguilar, A., Caraveo-Anduaga, J., Zamora-Olvera, M., Arronte-Rosales, A., Krug-Llamas, S., Olivares-Santos, E., Reyes-Morales, R., Tapia-García, H., García-González, M., Doubova, J., et al., Guía de práctica clínica para el diagnóstico y tratamiento de depresión en los adultos mayores, Salud Mental, 2007, vol. 30, no. 6, pp. 69–80.

    Google Scholar 

  3. Montgomery, S.A. and Åsberg, M., A new depression scale designed to be sensitive to change, Br. J. Psychiatry, 1979, vol. 134, no. 4, pp. 382–389.

    Article  Google Scholar 

  4. Fierro, M., Bustos, A., and Molina, C., Diferencias en la experiencia subjetiva entre depresión unipolar y bipolar, Revista Colombiana de Psiquiatría, 2016, vol. 45, no. 3, pp. 162–169.

    Article  Google Scholar 

  5. García-Ceja, E., Riegler, M., Jakobsen, P., Tørresen, J., Nordgreen, T., Oedegaard, K.J., and Fasmer, O.B., Depresjon: a motor activity database of depression episodes in unipolar and bipolar patients, Proc. 9th ACM Multimedia Systems Conf., Amsterdam, 2018, pp. 472–477.

  6. Association, A.P., et al., Diagnostic and statistical manual of mental disorders (DSM-5R©), American Psychiatric Pub., 2013.

    Book  Google Scholar 

  7. Armitage, R., Sleep and circadian rhythms in mood disorders, Acta Psychiatr. Scand., 2007, vol. 115, pp. 104–115.

    Article  Google Scholar 

  8. Koffel, E., Polusny, M.A., Arbisi, P.A., and Erbes, C.R., Predeployment day time and nighttime sleep complaints as predictors of post-deployment ptsd and depression in national guard troops, J. Anxiety Disord., 2013, vol. 27, no. 5, pp. 512–519.

    Article  Google Scholar 

  9. Wichniak, A., Wierzbicka, A., Walecka, M., and Jernajczyk, W., Effects of antidepressants on sleep, Curr. Psychiatry Rep., 2017, vol. 19, no. 9, p. 63.

    Article  Google Scholar 

  10. Kuhs, H. and Reschke, D., Psychomotor activity in unipolar and bipolar depressive patients, Psychopathology, 1992, vol. 25, no. 2, pp. 109–116.

    Article  Google Scholar 

  11. Fang, H., Tu, S., Sheng, J., and Shao, A., Depression in sleep disturbance: a review on a bidirectional relationship, mechanisms and treatment, J. Cell. Mol. Med., 2019, vol. 23, no. 4, pp. 2324–2332.

    Article  Google Scholar 

  12. Osmani, V., Smartphones in mental health: detecting depressive and manic episodes, IEEE Pervasive Comput., 2015, vol. 14, no. 3, pp. 10–13.

    Article  Google Scholar 

  13. Zanella-Calzada, L.A., Galván-Tejada, C.E., Chávez-Lamas, N.M., Gracía-Cortés, M., Magallanes-Quintanar, R., Celaya-Padilla, J.M., Galván-Tejada, J.I., and Gamboa-Rosales, H., Feature extraction in motor activity signal: towards a depression episodes detection in unipolar and bipolar patients, Diagnostics, 2019, vol. 9, no. 1, p. 8.

    Article  Google Scholar 

  14. Clark, A., The machine learning audit – crisp-dm framework, ISACA J., 2018, vol. 1, pp. 1–6.

    Google Scholar 

  15. Dåderman, A. and Rosander, S., Evaluating frameworks for implementing machine learning in signal processing: a comparative study of crisp-dm, semma and kdd, Kandidat-uppsats från KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018.

    Google Scholar 

  16. Palacios, H.J.G., Pantoja, G.A.H., Navarro, A.A.M., Puetaman, I.M.A., and Toledo, R.A.J., Comparativa entre crisp-dm y semma para la limpieza de datos en productos modis en un estudio de cambio de cobertura y uso del suelo: comparative between crisp-dm and semma for data cleaning of modis products in a study of land use and land cover change, Proc. 11th IEEE Colombian Computing Conf. (CCC), Medellin, 2016, pp. 1–9.

  17. Luis Fernando, C., Esperanza, E., and Andrés Felipe, M., Applying crisp-dm in a kdd process for the analysis of student attrition, in Proc. Colombian Conf. on Computing, Springer, 2018, pp. 386–401.

  18. Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P., From data mining to knowledge discovery in databases, AI Mag., 1996, vol. 17, no. 3, p. 37.

    Google Scholar 

  19. Ferenchick, E.K., Ramanuj, P., and Pincus, H.A., Depression in primary care: part 1 – screening and diagnosis, BMJ [Br. Med. J.], 2019, vol. 365, p. l794.

    Article  Google Scholar 

  20. Barnett, A., Zhang, C.J., Johnston, J.M., and Cerin, E., Relationships between the neighborhood environment and depression in older adults: 8a systematic review and metaanalysis, Int. Psychogeriatrics, 2018, vol. 30, no. 8, pp. 1153–1176.

    Article  Google Scholar 

  21. Maji, S., Society and ‘good woman’: a critical review of gender difference in depression, Int. J. Soc. Psychiatry, 2018, vol. 64, no. 4, pp. 396–405.

    Article  Google Scholar 

  22. Hollis, C., Depression, family environment, and adolescent suicidal behavior, J. Am. Acad. Child Adolesc. Psychiatry, 1996, vol. 35, no. 5, pp. 622–630.

    Article  Google Scholar 

  23. Kotiaho, S., Korniloff, K., Vanhala, M., Kautiainen, H., Koponen, H., Ahonen, T., and Mäntyselkä, P., Psychiatric diagnosis in primary care patients with increased depressive symptoms, Nord. J. Psychiatry, 2019, vol. 73, no. 3, pp. 195–199.

    Article  Google Scholar 

  24. Evans-Lacko, S. and Knapp, M., Cost of Depression in the Workplace across Eight Diverse Countries – Collectively us $250 Billion, LSE Health and Social Care, 2016.

    Google Scholar 

  25. Schuch, F.B., Vancampfort, D., Firth, J., Rosenbaum, S., Ward, P.B., Silva, E.S., Hallgren, M., Ponce De Leon, A., Dunn, A.L., Deslandes, A.C., et al., Physical activity and incident depression: a meta-analysis of prospective cohort studies, Am. J. Psychiatry, 2018, vol. 175, no. 7, pp. 631–648.

    Article  Google Scholar 

  26. Gruenerbl, A., Osmani, V., Bahle, G., Carrasco, J.C., Oehler, S., May-ora, O., Haring, C., and Lukowicz, P., Using smartphone mobility traces for the diagnosis of depressive and manic episodes in bipolar patients, Proc. 5th ACM Augmented Human Int. Conf., Kobe, 2014, p. 38.

  27. Murphy, M.J. and Peterson, M.J., Sleep disturbances in depression, Sleep Med. Clin., 2015, vol. 10, no. 1, pp. 17–23.

    Article  Google Scholar 

  28. Guglielmi, O., Magnavita, N., and Garbarino, S., Sleep quality, obstructive sleep apnea, and psychological distress in truck drivers: a cross-sectional study, Soc. Psychiatry Psychiatr. Epidemiol., 2018, vol. 53, no. 5, pp. 531–536.

    Article  Google Scholar 

  29. Srinivasan, R., Chen, C., and Cook, D., Activity recognition using actigraph sensor, Proc. 4th Int. Workshop on Knowledge Discovery from Sensor Data (ACM Sensor KDD’10), Washington, July, 2010, pp. 25–28.

  30. Garcia-Ceja, E., Riegler, M., Jakobsen, P., Torresen, J., Nordgreen, T., Oedegaard, K.J., and Fasmer, O.B., Motor activity based classification of depression in unipolar and bipolar patients, Proc. 31st IEEE Int. Symp. on Computer-Based Medical Systems (CBMS), Karlstad, 2018, pp. 316–321.

  31. Ravi, N., Dandekar, N., Mysore, P., and Littman, M.L., Activity recognition from accelerometer data, AAAI, 2005, vol. 5, pp.1541–1546.

    Google Scholar 

  32. Galván-Tejada, C., García-Vázquez, J., and Brena, R., Magnetic field feature extraction and selection for indoor location estimation, Sensors, 2014, vol. 14, no. 6, pp. 11 001–11 015.

  33. Granitto, P.M., Furlanello, C., Biasioli, F., and Gasperi, F., Recursive feature elimination with random forest for ptr-ms analysis of agroindustrial products, Chemom. Intell. Lab. Syst., 2006, vol. 83, no. 2, pp. 83–90.

    Article  Google Scholar 

  34. Kotsiantis, S., Kanellopoulos, D., Pintelas, P., et al., Handling imbalanced datasets: a review, GESTS Int. Trans. Comput. Sci. Eng., 2006, vol. 30, no. 1, pp. 25–36. [35] Castelli, M., Vanneschi, L., and ́ Largo, Á.R., Supervised learning: classification, in Encyclopedia of Bioinformatics and Computational Biology, Ranganathan, S., Gribskov, M., Nakai, K., and Schönbach, C., Eds., Elsevier, 2019, vol. 1–3, pp. 342–349.

  35. Vijayashree, J. and Sultana, H.P., A machine learning framework for feature selection in heart disease classification using improved particle swarm optimization with support vector machine classifier, Program. Comput. Software, 2018, vol. 44, no. 6, pp. 388–397.

    Article  Google Scholar 

  36. Jayashree, J. and Kumar, S.A., Linear discriminant analysis bsed genetic algorithm with generalized regression neural network – a hybrid expert system for diagnosis of diabetes, Program. Comput. Software, 2018, vol. 44, no. 6, pp. 417–427.

    Article  Google Scholar 

  37. Shatte, A.B., Hutchinson, D.M., Teague, S.J., Machine learning in mental health: a scoping review of methods and applications, Psychol. Med., 2019, vol. 49, no. 9, pp. 1426–1448.

    Article  Google Scholar 

  38. Kasthurirathne, S.N., Biondich, P.G., Grannis, S.J., Purkayastha, S., Vest, J.R., and Jones, J.F., Identification of patients in need of advanced xare for depression using data extracted from a statewide health information exchange: a machine learning approach, J. Med. Internet Res., 2019, vol. 21, no. 7, p. e13809.

    Article  Google Scholar 

  39. Pacheco-González, S.L., Zanella-Calzada, L.A., Galván-Tejada, C.E., Chávez-Lamas, N.M., Rivera-Gómez, J.F., and Galván-Tejada, J.I., Evaluation of five classifiers for depression episodes detection, Res. Comput. Sci., 2019, vol. 148, pp. 129–138.

    Article  Google Scholar 

  40. Frogner, J.I., Noori, F.M., Halvorsen, P., Hicks, S.A., Garcia-Ceja, E., Torresen, J., and Riegler, M.A., One-dimensional convolutional neural networks on motor activity neasurements in detection of depression, Proc. 4th Int. Workshop on Multimedia for Personal Health & Health Care, Nice, Oct. 2019, pp. 9–15.

  41. Rodríguez-Ruiz, J.G., Galván-Tejada, C.E., Zanella-Calzada, L.A., Celaya-Padilla, J.M., Galván-Tejada, J.I., Gamboa-Rosales, H., and Soto-Murillo, M.A., Comparison of night, day and 24 h motor activity data for the classification of depressive episodes, Diagnostics, 2020, vol. 10, no. 3, p. 162.

    Article  Google Scholar 

  42. Vychegzhanin, S.V., Razova, E.V., and Kotelnikov, E.V., What number of features is optimal: a new method based on approximation function for stance detection task, Proc. 9th Int. Conf. on Information Communication and Management, Prague, Aug. 2019, pp. 43–47.

  43. Garcia-Ceja, E., Riegler, M., Jakobsen, P., Torresen, J., Nordgreen, T., Oedegaard, K.J., and Bernt Fasmer, O., Depresjon: a motor activity database of depression episodes in unipolar and bipolar patients, 2018. https://datasets.simula.no/depresjon/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. G. Rodríguez-Ruiz, C. E. Galván-Tejada, S. Vázquez-Reyes, J. I. Galván-Tejada or H. Gamboa-Rosales.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Ruiz, J.G., Galván-Tejada, C.E., Vázquez-Reyes, S. et al. Classification of Depressive Episodes Using Nighttime Data; a Multivariate and Univariate Analysis. Program Comput Soft 46, 689–698 (2020). https://doi.org/10.1134/S0361768820080198

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768820080198

Navigation