Skip to main content
Log in

Modeling of jamming phenomenon in fixture design application: an analytical, numerical, and experimental study

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Jamming may occur during the loading of the workpiece in the fixture and cause an improper locating process or damage to the workpiece, fixture, and loading system. Consideration of the jamming phenomenon is a necessary task in the planning of the workpiece loading strategy. In the present paper, the minimum norm principle is used to present an analytical model for predicting the jamming occurrence conditions through calculating reaction forces at the contact points. The implementation of this model results in an optimization problem that is solved using the augmented Lagrange multiplier method. The proposed model is applied to two well-known jamming problems, namely the peg-in-hole and block and palm configurations. Numerical analysis is also conducted in Adams software to verify the theoretical predictions. Finally, the experimental setups are fabricated for these configurations to validate the theoretical predictions and numerical results. The results show that the maximum errors between the theoretical predictions and experimental results are 14.4% and 3.8% for the jamming-out angle in the peg-in-hole study and jamming-in travel in the block and palm problem, respectively. Moreover, the worst-case error of 6.9% is obtained for the theoretical prediction of the jamming-in travel of block compared to the numerical result. Agreement between the theoretical, numerical, and experimental results proves the capabilities of the suggested model in the accurate prediction of the jamming occurrence conditions and its potentials for use in the three-dimensional jamming-prone fixturing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

Notes

  1. Acrylonitrile Butadiene Styrene.

  2. Fused Deposition Modeling.

References

  1. Trinkle, J.C., Zeng, D.C.: Prediction of the quasistatic planar motion of a contacted rigid body. IEEE Trans. Robot. Autom. 11, 229–246 (1995). https://doi.org/10.1109/70.370504

    Article  Google Scholar 

  2. Pang, J.-S., Trinkle, J.C., Lo, G.: A complementarity approach to a quasistatic multi-rigid-body contact problem. Comput. Optim. Appl. 5, 139–154 (1996). https://doi.org/10.1007/BF00249053

    Article  MathSciNet  MATH  Google Scholar 

  3. Pang, J.-S., Trinkle, J.C.: Complementarity formulations and existence of solutions of dynamic multi-rigid-body contact problems with Coulomb friction. Math. Program. 73, 199–226 (1996). https://doi.org/10.1007/BF02592103

    Article  MathSciNet  MATH  Google Scholar 

  4. Zbiciak, A., Kozyra, Z.: Dynamics of multi-body mechanical systems with unilateral constraints and impacts. Proc. Eng. 91, 112–117 (2014). https://doi.org/10.1016/j.proeng.2014.12.024

    Article  Google Scholar 

  5. Chatterjee, A., Ruina, A.: A new algebraic rigid-body collision law based on impulse space considerations. J. Appl. Mech. 65, 939–951 (1998). https://doi.org/10.1115/1.2791938

    Article  Google Scholar 

  6. Liu, T., Wang, M.Y.: Computation of three-dimensional rigid-body dynamics with multiple unilateral contacts using time-stepping and Gauss–Seidel methods. IEEE Trans. Autom. Sci. Eng. 2, 19–31 (2005). https://doi.org/10.1109/TASE.2004.840074

    Article  Google Scholar 

  7. Stewart, D.E.: Time-stepping methods and the mathematics of rigid body dynamics. In: Guran, A. (ed.) Impact and Friction of Solids, Structures and Machines. Birkhäuser, Basel (2000)

    Google Scholar 

  8. Montrallo Flickinger, D., Williams, J., Trinkle, J.C.: Performance of a method for formulating geometrically exact complementarity constraints in multibody dynamic simulation. J. Comput. Nonlinear Dyn. 10, 011010 (2015). https://doi.org/10.1115/1.4027314

    Article  Google Scholar 

  9. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996). https://doi.org/10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I

    Article  MathSciNet  MATH  Google Scholar 

  10. Stewart, D., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with Coulomb friction. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). pp. 162–169. IEEE Press, New York (2000)

    Chapter  Google Scholar 

  11. Dupont, P.E., Yamajako, S.P.: Jamming and wedging in constrained rigid-body dynamics. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, pp. 2349–2354. IEEE Comput. Soc., Los Alamitos (1994)

    Chapter  Google Scholar 

  12. Trinkle, J.C., Yeap, S.L., Han, L.: When quasistatic jamming is impossible. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3401–3406. IEEE Press, New York (1996)

    Chapter  Google Scholar 

  13. Liu, T., Wang, M.Y., Low, K.H.: Non-jamming conditions in multi-contact rigid-body dynamics. Multibody Syst. Dyn. 22, 269–295 (2009). https://doi.org/10.1007/s11044-009-9165-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Usubamatov, R., Leong, K.W.: Analyses of peg-hole jamming in automatic assembly machines. Assem. Autom. 31, 358–362 (2011). https://doi.org/10.1108/01445151111172943

    Article  Google Scholar 

  15. Nategh, M.J.: Machine Tools Jig and Fixture Design. Tarbiat Modares University Press, Tehran (2012)

    Google Scholar 

  16. Parvaz, H., Nategh, M.J.: Development of an efficient method of jamming prediction for designing locating systems in computer-aided fixture design. Int. J. Adv. Manuf. Technol. 86, 2459–2471 (2016). https://doi.org/10.1007/s00170-016-8401-2

    Article  Google Scholar 

  17. Sathirakul, K., Sturges, R.H.: Jamming conditions for multiple peg-in-hole assemblies. Robotica 16, 329–345 (1998). https://doi.org/10.1017/S0263574798000393

    Article  Google Scholar 

  18. Fei, Y., Zhao, X.: Contact and jamming analysis for three dimensional dual peg-in-hole mechanism. Mech. Mach. Theory 39, 477–499 (2004). https://doi.org/10.1016/j.mechmachtheory.2003.11.003

    Article  MATH  Google Scholar 

  19. Huang, Y., Zhang, X., Chen, X., Ota, J.: Vision-guided peg-in-hole assembly by Baxter robot. Adv. Mech. Eng. 9, 168781401774807 (2017). https://doi.org/10.1177/1687814017748078

    Article  Google Scholar 

  20. Hou, Z., Philipp, M., Zhang, K., Guan, Y., Chen, K., Xu, J.: The learning-based optimization algorithm for robotic dual peg-in-hole assembly. Assem. Autom. 38, 369–375 (2018). https://doi.org/10.1108/AA-03-2018-039

    Article  Google Scholar 

  21. Zhang, K., Shi, M., Xu, J., Liu, F., Chen, K.: Force control for a rigid dual peg-in-hole assembly. Assem. Autom. 37, 200–207 (2017). https://doi.org/10.1108/AA-09-2016-120

    Article  Google Scholar 

  22. Zhang, K., Xu, J., Chen, H., Zhao, J., Chen, K.: Jamming analysis and force control for flexible dual peg-in-hole assembly. IEEE Trans. Ind. Electron. 66, 1930–1939 (2019). https://doi.org/10.1109/TIE.2018.2838069

    Article  Google Scholar 

  23. Rao, S.S.: Engineering Optimization. Wiley, Hoboken (2009)

    Book  Google Scholar 

  24. Software MSC, Adams tutorial kit for mechanical engineering courses (2016)

Download references

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Parvaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvaz, H., Hosseini, S.V. & Heidari, M. Modeling of jamming phenomenon in fixture design application: an analytical, numerical, and experimental study. Multibody Syst Dyn 52, 229–253 (2021). https://doi.org/10.1007/s11044-020-09775-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09775-5

Keywords

Navigation