Skip to main content

Advertisement

Log in

The effects of temperature and membrane thickness on the performance of aqueous alkaline redox flow batteries using napthoquinone and ferrocyanide as redox couple

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The mixture of naphthoquinone-4-sulfonic acid sodium salt and 2-hydroxy-naphthoquinone (NQSO) and ferrocyanide dissolved in potassium hydroxide (KOH) electrolyte was used as catholyte and anolyte, respectively. We evaluated the effects of temperature and membrane thickness on the performance of aqueous organic redox flow batteries (AORFB) using the NQSO and ferrocyanide dissolved in alkaline electrolyte. Regarding temperature effect, when the electrochemical properties of NQSO and ferrocyanide are evaluated with 25 and 40 °C, their redox reactivity is enhanced with increased temperature due to the proportional relation of reaction rate and temperature. In addition, their electron transfer rate is also improved with increased temperature due to the proportional relation of electron transfer rate and temperature. These are proven by Nyquist plots showing the reciprocal relationship of resistance and temperature. In AORFB full cell tests performed at 25 and 40 °C, although capacity decay rate observed at 40 °C (0.067 Ah·L−1 per cycle) is larger than that observed at 25°C (0.034 Ah·L−1 per cycle), energy efficiency (EE) was improved from 86% at 25 °C to 89% at 40 °C. Regarding membrane thickness effect, the performance of AORFB using thin Nafion 212 membrane is better than that of AORFBs using thick Nafion 117 and Nafion 1110 membranes in voltage efficiency (VE) and EE, while its capacity retention is vice versa. This is because thinner membrane induces lower resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Benitez, P. C. Benitez and G. C. Van Kooten, Energy Econ., 30, 1973 (2008).

    Article  Google Scholar 

  2. M. E. Amiryar and K. R. Pullen, Appl. Sci., 7, 286 (2017).

    Article  Google Scholar 

  3. M. Bortolini, M. Gamberi and A. Graziani, Energy Convers. Manag., 86, 81 (2014).

    Article  Google Scholar 

  4. X. Hu, L. Johannesson, N. Murgovski and B. Egardt, Appl. Energy, 137, 913 (2015).

    Article  Google Scholar 

  5. R. T. Doucette and M. D. McCulloch, J. Power Sources, 196, 1163 (2011).

    Article  CAS  Google Scholar 

  6. J. E. Lim and J. K. Kim, Korean J. Chem. Eng., 35, 2464 (2018).

    Article  CAS  Google Scholar 

  7. R. Andika, Y. Kim, C. M. Yun, S. H. Yoon and M. Lee, Korean J. Chem. Eng., 36, 12 (2019).

    Article  CAS  Google Scholar 

  8. S. Lee, B. Gendensuren, B. Kim, S. Jeon, Y. H. Cho, T. Kim and E. S. Oh, Korean J. Chem. Eng., 36, 1940 (2019).

    Article  CAS  Google Scholar 

  9. J. H. Kim, S. A. Jun, Y. Kwon, S. Ha, B. I. Sang and J. Kim, Bioelectrochemistry, 101, 114 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. K. Hyun, S. W. Han, W. G. Koh and Y. Kwon, Int. J. Hydrogen Energy, 40, 2199 (2015).

    Article  CAS  Google Scholar 

  11. K. H. Hyun, S. W. Han, W. G. Koh and Y. Kwon, J. Power Sources, 286, 197 (2015).

    Article  CAS  Google Scholar 

  12. M. Christwardana and Y. Kwon, J. Power Sources, 299, 604 (2015).

    Article  CAS  Google Scholar 

  13. Y. Chung, K. H. Hyun and Y. Kwon, Nanoscale, 8, 1161 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Y. Chung, Y. Ahn, M. Christwardana, H. Kim and Y. Kwon, Nanoscale, 8, 9201 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. M. Christwardana, K. J. Kim and Y. Kwon, Sci. Rep., 6, 1 (2016).

    Article  CAS  Google Scholar 

  16. N. Mahmood, C. Zhang, H. Yin and Y. Hou, J. Mater. Chem. A, 2, 15 (2014).

    Article  CAS  Google Scholar 

  17. M. M. Thackeray, C. Wolverton and E. D. Isaacs, Energy Environ. Sci., 5, 7854 (2012).

    Article  CAS  Google Scholar 

  18. C. Sun, J. Liu, Y. Gong, D. P. Wilkinson and J. Zhang, Nano Energy, 33, 363 (2017).

    Article  CAS  Google Scholar 

  19. H. S. Ko, H. W. Park, G. J. Kim and J. D. Lee, Korean J. Chem. Eng., 36, 620 (2019).

    Article  CAS  Google Scholar 

  20. W. G. Lim, C. Jo, J. Lee and D. S. Hwang, Korean J. Chem. Eng., 35, 579 (2018).

    Article  CAS  Google Scholar 

  21. J. Hassoun, S. Panero, P. Reale and B. Scrosati, Adv. Mater., 21, 4807 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. M. Masih-Tehrani, M. R. Ha’iri-Yazdi, V. Esfahanian and A. Safaei, J. Power Sources, 244, 2 (2013).

    Article  CAS  Google Scholar 

  23. P. Leung, X. Li, C. P. De León, L. Berlouis, C. J. Low and F. C. Walsh, Rsc Adv., 2, 10125 (2012).

    Article  CAS  Google Scholar 

  24. J. Winsberg, T. Hagemann, T. Janoschka, M. D. Hager and U. S. Schubert, Angew. Chem. Int. Ed., 56, 686 (2017).

    Article  CAS  Google Scholar 

  25. M. Bartolozzi, J. Power Sources, 27, 219 (1989).

    Article  CAS  Google Scholar 

  26. B. R. Chalamala, T. Soundappan, G. R. Fisher, M. R. Anstey, V. V. Viswanathan and M. L. Perry, Proc. IEEE, 102, 976 (2014).

    Article  CAS  Google Scholar 

  27. T. Sasaki, T. Kadoya and K. Enomoto, IEEE Trans. Power Syst., 19, 660 (2004).

    Article  Google Scholar 

  28. F. Pan and Q. Wang, Molecules, 20, 20499 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. X. L. Zhou, T. S. Zhao, L. An, Y. K. Zeng and L. Wei, J. Power Sources, 339, 1 (2017).

    Article  CAS  Google Scholar 

  30. M. H. Chakrabarti, F. S. Mjalli, I. M. AlNashef, M. A. Hashim, M. A. Hussain, L. Bahadori and C. T. J. Low, Renew. Sustain. Energy Rev., 30, 254 (2014).

    Article  CAS  Google Scholar 

  31. W. Lee, B. W. Kwon, M. Jung, D. Serhiichuk, D. Henkensmeier and Y. Kwon, J. Power Sources, 439, 227079 (2019).

    Article  CAS  Google Scholar 

  32. M. Lopez-Atalaya, G. Codina, J. R. Perez, J. L. Vazquez and A. Aldaz, J. Power Sources, 39, 147 (1992).

    Article  CAS  Google Scholar 

  33. J. D. Jeon, H. S. Yang, J. Shim, H. S. Kim and J. H. Yang, Electrochim. Acta, 127, 397 (2014).

    Article  CAS  Google Scholar 

  34. J. H. Yang, H. S. Yang, H. W. Ra, J. Shim and J. D. Jeon, J. Power Sources, 275, 294 (2015).

    Article  CAS  Google Scholar 

  35. K. J. Kim, M. S. Park, Y. J. Kim, J. H. Kim, S. X. Dou and M. Skyllas-Kazacos, J. Mater. Chem. A, 3, 16913 (2015).

    Article  CAS  Google Scholar 

  36. Y. K. Zeng, T. S. Zhao, L. An, X. L. Zhou and L. Wei, J. Power Sources, 300, 438 (2015).

    Article  CAS  Google Scholar 

  37. S. Jung, L. H. Kim, Y. Kwon and S. H. Kim, Korean J. Chem. Eng., 31, 2081 (2014).

    Article  CAS  Google Scholar 

  38. X. Luo, Z. Lu, J. Xi, Z. Wu, W. Zhu, L. Chen and X. Qiu, J. Phys. Chem. B, 109, 20310 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. M. Jung, W. Lee, N. N. Krishnan, S. Kim, G. Gupta, L. Komsiyska, C. Harms, Y. Kwon and D. Henkensmeier, Appl. Surf. Sci., 450, 301 (2018).

    Article  CAS  Google Scholar 

  40. X. L. Zhou, T. S. Zhao, L. An, L. Wei and C. Zhang, Electrochim. Acta, 153, 492 (2015).

    Article  CAS  Google Scholar 

  41. W. Lee, M. Jung, D. Serhiichuk, G. Gupta, C. Harms, Y. Kwon and D. Henkensmeier, J. Membr. Sci., 591, 117333 (2019).

    Article  CAS  Google Scholar 

  42. P. K. Leung, Q. Xu, T. S. Zhao, L. Zeng and C. Zhang, Electrochim. Acta, 105, 584 (2013).

    Article  CAS  Google Scholar 

  43. Q. Xu, T. S. Zhao and P. K. Leung, Appl. Energy, 105, 47 (2013).

    Article  CAS  Google Scholar 

  44. W. Li, J. Liu and C. Yan, Carbon, 49, 3463 (2011).

    Article  CAS  Google Scholar 

  45. S. Wang, X. Zhao, T. Cochell and A. Manthiram, J. Phys. Chem. Lett., 3, 2164 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Z. Tang, D. S. Aaron, A. B. Papandrew and T. A. Zawodzinski Jr., ECS Trans., 41, 1 (2012).

    Article  CAS  Google Scholar 

  47. S. Jeong, S. An, J. Jeong, J. Lee and Y. Kwon, J. Power Sources, 278, 245 (2015).

    Article  CAS  Google Scholar 

  48. J. Ryu, M. Park and J. Cho, J. Electrochem. Soc., 163, A5144 (2015).

    Article  CAS  Google Scholar 

  49. P. T. T. Hien, C. Jo, J. Lee and Y. Kwon, RSC Adv., 6, 17574 (2016).

    Article  CAS  Google Scholar 

  50. M. Park, J. Ryu and J. Cho, Chem. Asian J., 10, 2096 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. W. Lee, C. Jo, S. Youk, H. Y. Shin, J. Lee, Y. Chung and Y. Kwon, Appl. Surf. Sci., 429, 187 (2018).

    Article  CAS  Google Scholar 

  52. C. Noh, B. W. Kwon, Y. Chung and Y. Kwon, J. Power Sources, 438, 227063 (2019).

    Article  CAS  Google Scholar 

  53. C. Noh, B. W. Kwon, Y. Chung and Y. Kwon, J. Power Sources, 406, 26 (2018).

    Article  CAS  Google Scholar 

  54. C. Noh, C. Lee, W. S. Chi, Y. Chung, J. Kim and Y. Kwon, J. Electrochem. Soc., 165, A1388 (2018).

    Article  CAS  Google Scholar 

  55. J. Winsberg, T. Hagemann, T. Janoschka, M. D. Hager and U. S. Schubert, Angew. Chem. Int. Ed., 56, 686 (2017).

    Article  CAS  Google Scholar 

  56. P. Leung, A. A. Shah, L. Sanz, C. Flox, J. R. Morante, Q. Xu, M. R. Mohamed, C. Ponce de Leon and F. C. Walsh, J. Power Sources, 360, 243 (2017).

    Article  CAS  Google Scholar 

  57. W. Lee, B. W. Kwon and Y. Kwon, ACS Appl. Mater. Interfaces, 10, 36882 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. W. Wang, W. Xu, L. Cosimbescu, D. Choi, L. Li and Z. Yang, Chem. Commun., 48, 6669 (2012).

    Article  CAS  Google Scholar 

  59. H. S. Kim, K. J. Lee Y. K. Han, J. H. Ryu and S. M. Oh, J. Power Sources, 348, 264 (2017).

    Article  CAS  Google Scholar 

  60. W. Wang and V. Sprenkle, Nat. Chem., 8, 204 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. C. G. Armstrong and K. E. Toghill, Electrochem. Commun., 91, 19 (2018).

    Article  CAS  Google Scholar 

  62. M. Shin, C. Noh, Y. Chung and Y. Kwon, Chem. Eng. J., 398, 125631 (2020).

    Article  CAS  Google Scholar 

  63. C. Noh, Y. Chung and Y. Kwon, J. Power Sources, 466, 228333 (2020).

    Article  CAS  Google Scholar 

  64. B. Huskinson, M. P. Marshak, C. Suh, S. Er, M. R. Gerhardt, C. J. Galvin, X. Chen, A. Aspuru-Guzik, R. G. Gordon and M. J. Aziz, Nature, 505, 195 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. B. Yang, L. Hoober-Burkhardt, F. Wang, G. S. Prakash and S. R. Narayanan, J. Electrochem. Soc., 161, A1371 (2014).

    Article  CAS  Google Scholar 

  66. C. Chu, B. W. Kwon, W. Lee and Y. Kwon, Korean J. Chem. Eng., 36, 1732 (2019).

    Article  CAS  Google Scholar 

  67. K. Lin, Q. Chen, M. R. Gerhardt, L. Tong, S. B. Kim, L. Eisenach, A. W. Valle, D. Hardee, R. G. Gordon, M. J. Aziz and M. P. Marshak, Science, 349, 1529 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. W. Lee, G. Park and Y. Kwon, Chem. Eng. J., 386, 123985 (2020).

    Article  CAS  Google Scholar 

  69. D. G. Kwabi, K. Lin, Y. Ji, E. F. Kerr, M. A. Goulet, D. De Porcellinis, D. P. Tabor, D. A. Pollack, A. Aspuru-Guzik, R. G. Gordon and M. J. Aziz, Joule, 2, 1894 (2018).

    Article  CAS  Google Scholar 

  70. K. Lin, R. Gómez-Bombarelli, E. S. Beh, L. Tong, Q. Chen, A. Valle, A. Aspuru-Guzik, M. J. Aziz and R. G. Gordon, Nat. Energy, 1, 1 (2016).

    Google Scholar 

  71. W. Lee, A. Permatasari, B. W. Kwon and Y. Kwon, Chem. Eng. J., 358, 1438 (2019).

    Article  CAS  Google Scholar 

  72. X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle and W. Wang, Adv. Mater., 26, 7649 (2014).

    Article  CAS  PubMed  Google Scholar 

  73. W. Lee, A. Permatasari and Y. Kwon, J. Mater. Chem. C, 8, 5727 (2020).

    Article  CAS  Google Scholar 

  74. J. Luo, B. Hu, C. Debruler and T. L. Liu, Angew. Chem. Int. Ed., 57, 231 (2018).

    Article  CAS  Google Scholar 

  75. M. Schwaab and J. C. Pinto, Chem. Eng. Sci., 62, 2750 (2007).

    Article  CAS  Google Scholar 

  76. G. Renger, G. Christen, M. Karge, H. J. Eckert and K. D. Irrgang, J. Biol. Inorg. Chem., 3, 360 (1998).

    Article  CAS  Google Scholar 

  77. K. Hess, H. Morkoc, H. Shichijo and B. G. Streetman, Appl. Phys. Lett., 35, 469 (1979).

    Article  CAS  Google Scholar 

  78. X. Wang, J. M. Hu and I. M. Hsing, J. Electroanal. Chem., 562, 73 (2004).

    Article  CAS  Google Scholar 

  79. K. Lee and J. D. Nam, J. Power Sources, 157, 201 (2006).

    Article  CAS  Google Scholar 

  80. J. B. Kingdon and G. J. Ferland, Astrophys. J. Suppl. Ser., 106, 205 (1996).

    Article  CAS  Google Scholar 

  81. J. P. Bonvalet and C. de Rouffignac, J. Physiol., 318, 85 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. M. R. Wasielewski, M. P. Niemczyk, W. A. Svec and E. B. Pewitt, J. Am. Chem. Soc., 107, 1080 (1985).

    Article  CAS  Google Scholar 

  83. M. N. Tsampas, A. Pikos, S. Brosda, A. Katsaounis and C. G. Vayenas, Electrochim. Acta, 51, 2743 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Research Program funded by the SeoulTech (Seoul National University of Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dukrye Chang or Yongchai Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, W., Park, G., Chang, D. et al. The effects of temperature and membrane thickness on the performance of aqueous alkaline redox flow batteries using napthoquinone and ferrocyanide as redox couple. Korean J. Chem. Eng. 37, 2326–2333 (2020). https://doi.org/10.1007/s11814-020-0669-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-020-0669-0

Keywords

Navigation