Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 18, 2020

The influence of hydrophobicity on Fischer-Tropsch synthesis catalysts

  • Chike George Okoye-Chine ORCID logo EMAIL logo , Mahluli Moyo EMAIL logo and Diane Hildebrandt

Abstract

We review scientific works carried out on the influence of surface hydrophobicity on activity and product selectivity of supported cobalt and iron catalysts during Fischer-Tropsch synthesis (FTS). The characteristics of the surface of catalyst support may influence metal-support interactions, which leads to various degrees of metal dispersion and reducibility. Also, these support surface properties may influence the mass transfer of reactants and products at the catalyst active sites and subsequently affects the performance of the catalyst during FTS. Pre-silylated and post-silylated catalysts have been used to study the influence of surface hydrophobicity on the performance of FTS catalysts. The enhancement of FTS activity by hydrophobicity was mainly ascribed to the improved reducibility of metal oxide species. Furthermore, post-silylated supported iron catalysts favoured the suppression of water-gas shift (WGS) reaction, thereby hindering CO2 formation.


Corresponding authors: Chike George Okoye-Chine and Mahluli Moyo, Institute for the Development of Energy for African Sustainability (IDEAS), University of South Africa, Florida Science Campus, Johannesburg, 1710, South Africa, E-mail: ;

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The authors acknowledge the University of South Africa and the National Research Foundation (NRF) South Africa for their financial support.

  3. Conflict of interest statement: The authors declare that they have no conflicts of interest.

References

Alghunaim, A., Kirdponpattara, S., and Newby, B.Z. (2016). Techniques for determining contact angle and wettability of powders. Powder Technol. 287: 201–215. https://doi.org/10.1016/j.powtec.2015.10.002.Search in Google Scholar

Athariboroujeny, M., Raub, A., Iablokov, V., Chenakin, S., Kovarik, L., and Kruse, N. (2019). Competing mechanisms in CO hydrogenation over Co-MnOx catalysts. ACS Catal. 9: 5603–5612. https://doi.org/10.1021/acscatal.9b00967.Search in Google Scholar

Bhatelia, T., Ma, M., Davis, B., Jacobs, G., and Drabukur, G. (2011). Kinetics of the Fischer-Tropsch reaction over a Ru-promoted Co/Al2O3 catalyst. Chem. Eng. Trans. 25: 707–712. https://doi.org/10.3303/CET1125118.Search in Google Scholar

Blekkan, E.A., Borg, Ø., Frøseth, V., and Holmen, A. (2007). Fischer-Tropsch synthesis on cobalt catalysts: the effect of water. Catalysis 20: 13–32. https://doi.org/10.1039/B601307B.Search in Google Scholar

Borg, Ø., Storsæter, S., Eri, S., Wigum, H., Rytter, E., and Holmen, A. (2006). The effect of water on the activity and selectivity for γ-alumina supported cobalt Fischer-Tropsch catalysts with different pore sizes. Catal. Lett. 107: 95–102. https://doi.org/10.1007/s10562-005-9736-8.Search in Google Scholar

Borg, Ø., Dietzel, P.D.C., Spjelkavik, A.I., Tveten, E.Z., Walmsley, J.C., Diplas, S., Eri, S., Holmen, A., and Rytter, E. (2008). Fischer-Tropsch synthesis: cobalt particle size and support effects on intrinsic activity and product distribution. J. Catal. 259: 161–164. https://doi.org/10.1016/j.jcat.2008.08.017.Search in Google Scholar

Borg, Ø., Yu, Z., Chen, D., Blekkan, E.A., Rytter, E., and Holmen, A. (2014). The effect of water on the activity and selectivity for carbon nanofiber supported cobalt Fischer-Tropsch catalysts. Top. Catal. 57: 491–499. https://doi.org/10.1007/s11244-013-0205-0.Search in Google Scholar

Cheng, K., Gu, B., Liu, X., Kang, J., Zhang, Q., and Wang, Y. (2016). Direct and highly selective conversion of synthesis gas into lower olefins: design of a bifunctional catalyst combining methanol synthesis and carbon-carbon coupling. Angew. Chem. Int. Ed. 55: 4725–4728. https://doi.org/10.1002/anie.201601208.Search in Google Scholar

Cho, J.M., Lee, S.R., Sun, J., Tsubaki, N., Jang, E.J., and Bae, J.W. (2017). Highly ordered mesoporous Fe2O3-ZrO2 bimetal oxides for an enhanced CO hydrogenation activity to hydrocarbons with their structural stability. ACS Catal. 7: 5955–5964. https://doi.org/10.1021/acscatal.7b01989.Search in Google Scholar

Claeys, M. and Van Steen, E. (2002). On the effect of water during Fischer-Tropsch synthesis with a ruthenium catalyst. Catal. Today 71: 419–427. https://doi.org/10.1016/s0920-5861(01)00469-2.Search in Google Scholar

Dalai, A.K. and Davis, B.H. (2008). Fischer-Tropsch synthesis: a review of water effects on the performances of unsupported and supported Co catalysts. Appl. Catal. Gen. 348: 1–15. https://doi.org/10.1016/j.apcata.2008.06.021.Search in Google Scholar

Dalai, A.K., Das, T.K., Chaudhari, K.V., Jacobs, G., and Davis, B.H. (2005). Fischer-Tropsch synthesis: water effects on Co supported on narrow and wide-pore silica. Appl. Catal. Gen. 289: 135–142. https://doi.org/10.1016/j.apcata.2005.04.045.Search in Google Scholar

Das, T.K., Jacobs, G., Patterson, P.M., Conner, W.A., Li, J., and Davis, B.H. (2003). Fischer-Tropsch synthesis: characterization and catalytic properties of rhenium promoted cobalt alumina catalysts. Fuel 82: 805–815. https://doi.org/10.1016/s0016-2361(02)00361-7.Search in Google Scholar

Davis, B.H. (2007). Fischer-tropsch synthesis: comparison of performances of iron and cobalt catalysts. Ind. Eng. Chem. Res. 46: 8938–8945. https://doi.org/10.1021/ie0712434.Search in Google Scholar

Davis, B.H., Xu, L., and Bao, S. (1997). Role of CO2 oxygenates and alkenes in the initiation of chain growth during the Fischer-Tropsch synthesis. Stud. Surf. Sci. Catal. 107: 175–180. https://doi.org/10.1016/s0167-2991(97)80331-x.Search in Google Scholar

De la Peña O’Shea, V.A., Homs, N., Fierro, J.L.G., and De la Piscina, P.R. (2006). Structural changes and activation treatment in a Co/SiO2 catalyst for Fischer-Tropsch synthesis. Catal. Today 114: 422–427. https://doi.org/10.1016/j.cattod.2006.02.065.Search in Google Scholar

Dry, M.E. (1996). Practical and theoretical aspects of the catalytic Fischer-Tropsch process. Appl. Catal. Gen. 138: 319–344. https://doi.org/10.1016/0926-860x(95)00306-1.Search in Google Scholar

Dry, M.E. (2002). The Fischer-Tropsch process: 1950–2000. Catal. Today 71: 227–241. https://doi.org/10.1016/s0920-5861(01)00453-9.Search in Google Scholar

Fellenz, N.A., Bengoa, J.F., Cagnoli, M.V., and Marchetti, S.G. (2017). Changes in the surface hydrophobicity degree of a MCM-41 used as iron support: a pathway to improve the activity and the olefins production in the Fischer-Tropsch synthesis. J. Porous Mater. 24: 1025–1036. https://doi.org/10.1007/s10934-016-0342-5.Search in Google Scholar

Fischer, N., Van Steen, E., and Claeys, M. (2013). Structure sensitivity of the Fischer-Tropsch activity and selectivity on alumina supported cobalt catalysts. J. Catal. 299: 67–80. https://doi.org/10.1016/j.jcat.2012.11.013.Search in Google Scholar

Fraile, J.M., García, J.I., Mayoral, J.A., and Vispe, E. (2003). Optimization of cyclohexene epoxidation with dilute hydrogen peroxide and silica-supported titanium catalysts. Appl. Catal. Gen. 245: 363–376. https://doi.org/10.1016/s0926-860x(02)00643-9.Search in Google Scholar

Fratalocchi, L., Visconti, C.G., Lietti, L., Groppi, G., Tronconi, E., Roccaro, E., and Zennaro, R. (2016). On the performance of a Co-based catalyst supported on modified γ-Al2O3 during Fischer-Tropsch synthesis in the presence of co-fed water. Catal. Sci. Technol. 6: 6431–6440. https://doi.org/10.1039/c6cy00583g.Search in Google Scholar

Galvis, H.M.T., Bitter, J.H., Khare, C.B., Ruitenbeek, M., Dugulan, A.I., and De Jong, K.P. (2012). Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science 335: 835–838. https://doi.org/10.1126/science.1215614.Search in Google Scholar

Garner, S.M., Rear, E.A.O., Khajotia, S.S., Luis, F., and Florez, E. (2020). The applicability of a drop penetration method to measure contact angles on TiO2 and ZnO nanoparticles. Nanomaterials 10: 1099. https://doi.org/10.3390/nano10061099.Search in Google Scholar

González-Carballo, J.M., Pérez-Alonso, F.J., García-García, F.J., Ojeda, M., Fierro, J.L.G., and Rojas, S. (2015). In-situ study of the promotional effect of chlorine on the Fischer-Tropsch synthesis with Ru/Al2O3. J. Catal. 332: 177–186. https://doi.org/10.1016/j.jcat.2015.10.008.Search in Google Scholar

Gorimbo, J., Lu, X., Liu, X., Hildebrandt, D., and Glasser, D. (2017). A long term study of the gas phase of low pressure Fischer-Tropsch products when reducing an iron catalyst with three different reducing gases. Appl. Catal. Gen. 534: 1–11. https://doi.org/10.1016/j.apcata.2017.01.013.Search in Google Scholar

Hilmen, A.M., Schanke, D., Hanssen, K.F., and Holmen, A. (1999). Study of the effect of water on alumina supported cobalt Fischer-Tropsch catalysts. Appl. Catal. Gen. 186: 169–188. https://doi.org/10.1016/s0926-860x(99)00171-4.Search in Google Scholar

Iglesia, E. (1997). Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts. Appl. Catal. Gen. 161: 59–78. https://doi.org/10.1016/s0926-860x(97)00186-5.Search in Google Scholar

Jacobs, G., Das, T.K., Zhang, Y., Li, J., Racoillet, G., and Davis, B.H. (2002a). Fischer-Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl. Catal. Gen. 233: 263–281. https://doi.org/10.1016/s0926-860x(02)00195-3.Search in Google Scholar

Jacobs, G., Patterson, P.M., Zhang, Y., Das, T., Li, J., and Davis, B.H. (2002b). Fischer-Tropsch synthesis: deactivation of noble metal-promoted Co/Al2O3 catalysts. Appl. Catal. Gen. 233: 215–226. https://doi.org/10.1016/s0926-860x(02)00147-3.Search in Google Scholar

Jacobs, G., Chaney, J.A., Patterson, P.M., Das, T.K., and Davis, B.H. (2004a). Fischer-Tropsch synthesis: study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS. Appl. Catal. Gen. 264: 203–212. https://doi.org/10.1016/j.apcata.2003.12.049.Search in Google Scholar

Jacobs, G., Patterson, P.M., Das, T.K., Luo, M., and Davis, B.H. (2004b). Fischer-Tropsch synthesis: effect of water on Co/Al2O3 catalysts and XAFS characterization of reoxidation phenomena. Appl. Catal. Gen. 270: 65–76. https://doi.org/10.1016/j.apcata.2004.04.025.Search in Google Scholar

Jahangiri, H., Bennett, J., Mahjoubi, P., Wilson, K., and Gu, S. (2014). A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal. Sci. Technol. 4: 2210–2229. https://doi.org/10.1039/c4cy00327f.Search in Google Scholar

James, O.O., Mesubi, A.M., Ako, T.C., and Maity, S. (2010). Increasing carbon utilization in Fischer-Tropsch synthesis using H2-deficient or CO2-rich syngas feeds. Fuel Process. Technol. 91: 136–144. https://doi.org/10.1016/j.fuproc.2009.09.017.Search in Google Scholar

Jaroniec, C.P., Kruk, M., Jaroniec, M., and Sayari, A. (2002). Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes. J. Phys. Chem. B 102: 5503–5510. https://doi.org/10.1021/jp981304z.Search in Google Scholar

Javed, M., Zhang, G., Gao, W., Cao, Y., Dai, P., and Ji, X. (2019). From hydrophilic to hydrophobic: a promising approach to tackle high CO2 selectivity of Fe-based Fischer-Tropsch microcapsule catalysts. Catal. Today 330: 39–45. https://doi.org/10.1016/j.cattod.2018.08.010.Search in Google Scholar

Jia, L., Jia, L., Li, D., Hou, B., Wang, J., and Sun, Y. (2011). Silylated Co/SBA-15 catalysts for Fischer-Tropsch synthesis. J. Solid State Chem. 184: 488–493. https://doi.org/10.1016/j.jssc.2010.10.002.Search in Google Scholar

Jiao, F., Li, J., Pan, X., Xiao, J., Li, H., Ma, H., Wei, M., Pan, Y., Zhou, Z., Li, M., et al.. (2016). Selective conversion of syngas to light olefins. Science 351: 1065–1068. https://doi.org/10.1126/science.aaf1835.Search in Google Scholar PubMed

Khodakov, A.Y., Griboval-Constant, A., Bechara, R., and Zholobenko, V.L. (2002). Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas. J. Catal. 206: 230–241. https://doi.org/10.1006/jcat.2001.3496.Search in Google Scholar

Khodakov, A.Y., Chu, W., and Fongarland, P. (2007). Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107: 1692–1744. https://doi.org/10.1021/cr050972v.Search in Google Scholar PubMed

Kim, D.J., Dunn, B.C., Cole, P., Turpin, G., Ernst, R.D., Pugmire, R.J., Kang, M., Kim, J.M., and Eyring, E.M. (2005). Enhancement in the reducibility of cobalt oxides on a mesoporous silica supported cobalt catalyst. Chem. Commun.: 1462–1464. https://doi.org/10.1039/b417536k.Search in Google Scholar

Krishnamoorthy, S., Li, A., and Iglesia, E. (2002a). Pathways for CO2 formation and conversion during Fischer-Tropsch synthesis on iron-based catalysts. Catal. Lett. 80: 77–86. https://doi.org/10.1023/a:1015382811877.10.1023/A:1015382811877Search in Google Scholar

Krishnamoorthy, S., Tu, M., Ojeda, M.P., Pinna, D., and Iglesia, E. (2002b). An investigation of the effects of water on rate and selectivity for the Fischer-Tropsch synthesis on cobalt-based catalysts. J. Catal. 211: 422–433. https://doi.org/10.1006/jcat.2002.3749.Search in Google Scholar

Kubota, Y., Ikeya, H., Sugi, Y., Yamada, T., and Tatsumi, T. (2006). Organic-inorganic hybrid catalysts based on ordered porous structures for Michael reaction. J. Mol. Catal. Chem. 249: 181–190. https://doi.org/10.1016/j.molcata.2006.01.015.Search in Google Scholar

Li, Z., Liu, R., Xu, Y., and Ma, X. (2015). Enhanced Fischer-Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs. Appl. Surf. Sci. 347: 643–650. https://doi.org/10.1016/j.apsusc.2015.04.169.Search in Google Scholar

Liuzzi, D., Fernandez, E., Perez, S., Ipiñazar, E., Arteche, A., Fierro, J.L.G., Viviente, J.L., Alfredo, D., Tanaka, P., and Rojas, S. (2020). Advances in membranes and membrane reactors for the Fischer-Tropsch synthesis process for biofuel production. Reviews in Chemical Engineering, https://doi.org/10.1515/revce-2019-0067 (Epub ahead of print).Search in Google Scholar

Luo, M. and Davis, B.H. (2003). Fischer-Tropsch synthesis: group II alkali-earth metal promoted catalysts. Appl. Catal. Gen. 246: 171–181. https://doi.org/10.1016/s0926-860x(03)00024-3.Search in Google Scholar

Luo, M., Hamdeh, H., and Davis, B.H. (2009). Fischer-Tropsch synthesis. Catalyst activation of low alpha iron catalyst. Catal. Today 140: 127–134. https://doi.org/10.1016/j.cattod.2008.10.004.Search in Google Scholar

Ma, W., Jacobs, G., Sparks, D.E., Todic, B., Bukur, D.B., and Davis, B.H. (2019). Quantitative comparison of iron and cobalt based catalysts for the Fischer-Tropsch synthesis under clean and poisoning conditions. Catal. Today 343: 125–136. https://doi.org/10.1016/j.cattod.2019.04.011.Search in Google Scholar

Martínez, A. and Prieto, G. (2007a). Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles. J. Catal. 245: 470–476. https://doi.org/10.1016/j.jcat.2006.11.002.Search in Google Scholar

Martínez, A. and Prieto, G. (2007b). The key role of support surface tuning during the preparation of catalysts from reverse micellar-synthesized metal nanoparticles. Catal. Commun. 8: 1479–1486. https://doi.org/10.1016/j.catcom.2006.12.025.Search in Google Scholar

Martínez del Monte, D., Vizcaíno, A.J., Dufour, J., and Martos, C. (2019). Effect of K, Co and Mo addition in Fe-based catalysts for aviation biofuels production by Fischer-Tropsch synthesis. Fuel Process. Technol. 194: 106102. https://doi.org/10.1016/j.fuproc.2019.05.025.Search in Google Scholar

Melaet, G., Lindeman, A.E., and Somorjai, G.A. (2014). Cobalt particle size effects in the Fischer-Tropsch synthesis and in the hydrogenation of CO2 studied with nanoparticle model catalysts on silica. Top. Catal. 57: 500–507. https://doi.org/10.1007/s11244-013-0206-z.Search in Google Scholar

Mosayebi, A., Mehrpouya, M.A., and Abedini, R. (2016). The development of new comprehensive kinetic modeling for Fischer-Tropsch synthesis process over Co-Ru/γ-Al2O3 nano-catalyst in a fixed-bed reactor. Chem. Eng. J. 286: 416–426. https://doi.org/10.1016/j.cej.2015.10.087.Search in Google Scholar

Nowak, E., Combes, G., Stitt, E.H., and Pacek, A.W. (2013). A comparison of contact angle measurement techniques applied to highly porous catalyst supports. Powder Technol. 233: 52–64. https://doi.org/10.1016/j.powtec.2012.08.032.Search in Google Scholar

Ojeda, M., Pérez-Alonso, F.J., Terreros, P., Rojas, S., Herranz, T., Granados, M.L., and Fierro, J.L.G. (2006). Silylation of a Co/SiO2 catalyst. Characterization and exploitation of the CO hydrogenation reaction. Langmuir 22: 3131–3137. https://doi.org/10.1021/la052980c.Search in Google Scholar PubMed

Okoye-Chine, C.G., Moyo, M., Liu, X., and Hildebrandt, D. (2019). A critical review of the impact of water on cobalt-based catalysts in Fischer-Tropsch synthesis. Fuel Process. Technol. 192: 105–129. https://doi.org/10.1016/j.fuproc.2019.04.006.Search in Google Scholar

Okoye-Chine, C.G., Mbuya, C.O.L., Ntelane, T.S., Moyo, M., and Hildebrandt, D. (2020). The effect of silanol groups on the metal-support interactions in silica-supported cobalt Fischer-Tropsch catalysts. A temperature programmed surface reaction. J. Catal. 381: 121–129. https://doi.org/10.1016/j.jcat.2019.10.036.Search in Google Scholar

Omota, F., Dimian, A.C., and Bliek, A. (2005). Partially hydrophobized silica supported Pd catalyst for hydrogenation reactions in aqueous media. Appl. Catal. Gen. 294: 121–130. https://doi.org/10.1016/j.apcata.2005.06.032.Search in Google Scholar

Panpranot, J., Goodwin, J.G., and Sayari, A. (2002). CO hydrogenation on Ru-promoted Co/MCM-41 catalysts. J. Catal. 211: 530–539. https://doi.org/10.1006/jcat.2002.3761.Search in Google Scholar

Pedersen, E.Ø., Svenum, I.H., and Blekkan, E.A. (2018). Mn promoted Co catalysts for Fischer-Tropsch production of light olefins – an experimental and theoretical study. J. Catal. 361: 23–32. https://doi.org/10.1016/j.jcat.2018.02.011.Search in Google Scholar

Rytter, E., Borg, Ø., Tsakoumis, N.E., and Holmen, A. (2018a). Water as key to activity and selectivity in Co Fischer-Tropsch synthesis: γ-alumina based structure-performance relationships. J. Catal. 365: 334–343. https://doi.org/10.1016/j.jcat.2018.07.003.Search in Google Scholar

Rytter, E., Salman, A.U.R., Tsakoumis, N.E., Myrstad, R., Yang, J., Lögdberg, S., Holmen, A., and Rønning, M. (2018b). Hydrophobic catalyst support surfaces by silylation of γ-alumina for Co/Re Fischer-Tropsch synthesis. Catal. Today 299: 20–27. https://doi.org/10.1016/j.cattod.2017.04.031.Search in Google Scholar

Rytter, E., Borg, Ø., Enger, B.C., and Holmen, A. (2019). α-alumina as catalyst support in Co Fischer-Tropsch synthesis and the effect of added water; encompassing transient effects. J. Catal. 373: 13–24. https://doi.org/10.1016/j.jcat.2019.03.013.Search in Google Scholar

Saib, A.M., Claeys, M., and Van Steen, E. (2002). Silica supported cobalt Fischer-Tropsch catalysts: effect of pore diameter of support. Catal. Today 71: 395–402. https://doi.org/10.1016/s0920-5861(01)00466-7.Search in Google Scholar

Schanke, D., Eri, S., Rytter, E., Aaserud, C., Hilmen, A.M., Lindvg, O.A., Bergene, E., and Holmen, A. (2004). Fischer-Tropsch synthesis on cobalt catalysts supported on different aluminas. Stud. Surf. Sci. Catal. 147: 301–306. https://doi.org/10.1016/s0167-2991(04)80068-5.Search in Google Scholar

Schulz, H. and Claeys, M. (1999). Reactions of α-olefins of different chain length added during Fischer-Tropsch synthesis on a cobalt catalyst in a slurry reactor. Appl. Catal. Gen. 186: 71–90. https://doi.org/10.1016/s0926-860x(99)00165-9.Search in Google Scholar

Sever, R.R., Alcala, R., Dumesic, J.A., and Root, T.W. (2003). Vapor-phase silylation of MCM-41 and Ti-MCM-41. Microporous Mesoporous Mater. 66: 53–67. https://doi.org/10.1016/j.micromeso.2003.08.019.Search in Google Scholar

Shan, Y., Liew, K., and Li, J. (2009). Effect of silylation of SBA-15 on its supported cobalt catalysts for Fischer-Tropsch synthesis. Chin. J. Catal. 30: 1091–1095. https://doi.org/10.1016/s1872-2067(08)60141-2.Search in Google Scholar

Shi, L., Li, D., Hou, B., and Sun, Y. (2007). Organic modification of SiO2 and its influence on the properties of Co-based catalysts for Fischer-Tropsch synthesis. Chin. J. Catal. 28: 999–1002. https://doi.org/10.1016/s1872-2067(07)60084-9.Search in Google Scholar

Shi, L., Chen, J., Fang, K., and Sun, Y. (2008). CH3-modified Co/Ru/SiO2 catalysts and the performances for Fischer-Tropsch synthesis. Fuel 87: 521–526. https://doi.org/10.1016/j.fuel.2007.03.018.Search in Google Scholar

Shi, L., Li, D., Hou, B., Wang, Y., and Sun, Y. (2010). The modification of SiO2 by various organic groups and its influence on the properties of cobalt-based catalysts for Fischer-Tropsch synthesis. Fuel Process. Technol. 91: 394–398. https://doi.org/10.1016/j.fuproc.2009.06.003.Search in Google Scholar

Skowronska-Ptasinska, M.D., Vorstenbosch, M.L.W., Van Santen, R.A., and Abbenhuis, H.C.L. (2002). Titanium silsesquioxanes grafted on three-dimensionally netted polysiloxanes: catalytic ensembles for epoxidation of alkenes with aqueous hydrogen peroxide. Angew. Chem. Int. Ed. 41: 637–639. https://doi.org/10.1002/1521-3773(20020215)41:4<637::aid-anie637>3.0.co;2-i.10.1002/1521-3773(20020215)41:4<637::AID-ANIE637>3.0.CO;2-ISearch in Google Scholar

Storsæter, S., Borg, Ø., Blekkan, E.A., and Holmen, A. (2005). Study of the effect of water on Fischer-Tropsch synthesis over supported cobalt catalysts. J. Catal. 231: 405–419. https://doi.org/10.1016/j.jcat.2005.01.036.Search in Google Scholar

Van Berge, P.J., Van De Loosdrecht, J., Barradas, S., and Van Der Kraan, A.M. (2000). Oxidation of cobalt based Fischer-Tropsch catalysts as a deactivation mechanism. Catal. Today 58: 321–334. https://doi.org/10.1016/s0920-5861(00)00265-0.Search in Google Scholar

Van Steen, E., Sewell, G.S., Makhothe, R.A., Micklethwaite, C., Manstein, H., De Lange, M., and O’Connor, C.T. (1996). TPR study on the preparation of impregnated Co/SiO2 catalysts. J. Catal. 229: 220–229. https://doi.org/10.1006/jcat.1996.0279.Search in Google Scholar

Wang, J., Huang, S., Howard, S., Muir, B.W., Wang, H., Kennedy, D.F., and Ma, X. (2019). Elucidating surface and bulk phase transformation in Fischer-Tropsch synthesis catalysts and their influences on catalytic performance. ACS Catal. 9: 7976–7983. https://doi.org/10.1021/acscatal.9b01104.Search in Google Scholar

Wight, A.P. and Davis, M.E. (2002). Design and preparation of organic-inorganic hybrid catalysts. Chem. Rev. 102: 3589–3614. https://doi.org/10.1021/cr010334m.Search in Google Scholar

Wu, L., Huang, Y., Wang, Z., Liu, L., and Xu, H. (2010). Fabrication of hydrophobic alumina aerogel monoliths by surface modification and ambient pressure drying. Appl. Surf. Sci. 256: 5973–5977. https://doi.org/10.1016/j.apsusc.2010.03.104.Search in Google Scholar

Xie, R., Li, D., Hou, B., Wang, J., Jia, L., and Sun, Y. (2011). Silylated Co3O4-m-SiO2 catalysts for Fischer-Tropsch synthesis. Catal. Commun. 12: 589–592. https://doi.org/10.1016/j.catcom.2010.12.013.Search in Google Scholar

Yan, B., Ma, L., Gao, X., Zhang, J., Ma, Q., and Zhao, T. (2019). Amphiphobic surface fabrication of iron catalyst and effect on product distribution of Fischer-Tropsch synthesis. Appl. Catal. Gen. 585: 117184. https://doi.org/10.1016/j.apcata.2019.117184.Search in Google Scholar

Yang, Y.H., Zhang, G., Hong, X., and Zhu, Y. (2004). Silylation of mesoporous silica MCM-41 with the mixture of Cl(CH2)3SiCl3 and CH3SiCl3: combination of adjustable grafting density and improved hydrothermal stability. Microporous Mesoporous Mater. 68: 119–125. https://doi.org/10.1016/j.micromeso.2003.12.014.Search in Google Scholar

Yang, Q., Liu, J., Zhang, L., and Li, C. (2009). Functionalized periodic mesoporous organosilicas for catalysis. J. Mater. Chem. 19: 1945–1955. https://doi.org/10.1039/b815012e.Search in Google Scholar

Yu, X., Zhang, J., Wang, X., Ma, Q., Gao, X., Xia, H., Lai, X., Fan, S., and Zhao, T.S. (2018). Fischer-Tropsch synthesis over methyl modified Fe2O3@SiO2 catalysts with low CO2 selectivity. Appl. Catal. B Environ. 232: 420–428. https://doi.org/10.1016/j.apcatb.2018.03.048.Search in Google Scholar

Zhang, Y., Koike, M., Yang, R., Hinchiranan, S., Vitidsant, T., and Tsubaki, N. (2005). Multi-functional alumina-silica bimodal pore catalyst and its application for Fischer-Tropsch synthesis. Appl. Catal. Gen. 292: 252–258. https://doi.org/10.1016/j.apcata.2005.06.004.Search in Google Scholar

Zhang, Y., Hanayama, K., and Tsubaki, N. (2006). The surface modification effects of silica support by organic solvents for Fischer-Tropsch synthesis catalysts. Catal. Commun. 7: 251–254. https://doi.org/10.1016/j.catcom.2005.11.008.Search in Google Scholar

Zhang, Y., Liu, Y., Yang, G., Sun, S., and Tsubaki, N. (2007). Effects of impregnation solvent on Co/SiO2 catalyst for Fischer-Tropsch synthesis: a highly active and stable catalyst with bimodal sized cobalt particles. Appl. Catal. Gen. 321: 79–85. https://doi.org/10.1016/j.apcata.2007.01.030.Search in Google Scholar

Zhang, L., Liu, J., Yang, J., Yang, Q., and Li, C. (2008). Direct synthesis of highly ordered amine-functionalized mesoporous ethane-silicas. Microporous Mesoporous Mater. 109: 172–183. https://doi.org/10.1016/j.micromeso.2007.04.050.Search in Google Scholar

Zhang, Y., Liu, Y., Yang, G., Endo, Y., and Tsubaki, N. (2009). The solvent effects during preparation of Fischer-Tropsch synthesis catalysts: improvement of reducibility, dispersion of supported cobalt and stability of catalyst. Catal. Today 142: 85–89. https://doi.org/10.1016/j.cattod.2009.01.014.Search in Google Scholar

Zhang, Y., Wang, T., Ma, L., Shi, N., Zhou, D., and Li, X. (2017). Promotional effects of Mn on SiO2 -encapsulated iron-based spindles for catalytic production of liquid hydrocarbons. J. Catal. 350: 41–47. https://doi.org/10.1016/j.jcat.2017.02.019.Search in Google Scholar

Zola, A.S., Da Silva, L.S., Moretti, A.L., Do Couto Fraga, A., Sousa-Aguiar, E.F., and Arroyo, P.A. (2016). Effect of silylation and support porosity of Co/MCM-41 and Co/SiO2 catalysts in Fischer-Tropsch synthesis. Top. Catal. 59: 219–229. https://doi.org/10.1007/s11244-015-0446-1.Search in Google Scholar

Received: 2020-05-26
Accepted: 2020-10-09
Published Online: 2020-12-18
Published in Print: 2022-07-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.4.2024 from https://www.degruyter.com/document/doi/10.1515/revce-2020-0037/html
Scroll to top button