Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity

Abstract

Mechanophores can be used to produce strain-dependent covalent chemical responses in polymeric materials, including stress strengthening, stress sensing and network remodelling. In general, it is desirable for mechanophores to be inert in the absence of force but highly reactive under applied tension. Metallocenes possess potentially useful combinations of force-free stability and force-coupled reactivity, but the mechanistic basis of this reactivity remains largely unexplored. Here, we have used single-molecule force spectroscopy to show that the mechanical reactivities of a series of ferrocenophanes are not correlated with ring strain in the reactants, but with the extent of rotational alignment of their two cyclopentadienyl ligands. Distal attachments can be used to restrict the mechanism of ferrocene dissociation to proceed through ligand ‘peeling’, as opposed to the more conventional ’shearing’ mechanism of the parent ferrocene, leading the dissociation rate constant to increase by several orders of magnitude at forces of ~1 nN. It also leads to improved macroscopic, multi-responsive behaviour, including mechanochromism and force-induced cross-linking in ferrocenophane-containing polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the proposed mechanochemical dissociation mechanisms and their relationship to metallocene structure.
Fig. 2: FCP polymers used in this study and their respective behaviour in SMFS experiments.
Fig. 3: The relationship between FCP structure and the structural changes that accompany ligand dissociation.
Fig. 4: Correlation between side-chain angle at ligand dissociation and the SMFS plateau force.
Fig. 5: Multifunctional mechanochemical responses of cis-3FCP.

Similar content being viewed by others

Data availability

All the data generated and/or analysed during the current study are available as Supplementary Information, and the datasets supporting Fig. 2b,c through the Duke Research Data Repository (https://doi.org/10.7924/r4gq6z428).

References

  1. Akbulatov, S. & Boulatov, R. Experimental polymer mechanochemistry and its interpretational frameworks. ChemPhysChem 18, 1422–1450 (2017).

    CAS  PubMed  Google Scholar 

  2. Willis-Fox, N., Rognin, E., Aljohani, T. A. & Daly, R. Polymer mechanochemistry: manufacturing is now a force to be reckoned with. Chem 4, 2499–2537 (2018).

    CAS  Google Scholar 

  3. Izak-Nau, E., Campagna, D., Baumann, C. & Göstl, R. Polymer mechanochemistry-enabled pericyclic reactions. Polym. Chem. 11, 2274–2299 (2020).

    CAS  Google Scholar 

  4. Jung, S. & Yoon, H. J. Mechanical force induces ylide‐free cycloaddition of nonscissible aziridines. Angew. Chem. Int. Ed. 59, 4883–4887 (2020).

    CAS  Google Scholar 

  5. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    CAS  PubMed  Google Scholar 

  6. Sagara, Y. et al. Rotaxanes as mechanochromic fluorescent force transducers in polymers. J. Am. Chem. Soc. 140, 1584–1587 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, T. A., Robb, M. J., Moore, J. S., White, S. R. & Sottos, N. R. Mechanical reactivity of two different spiropyran mechanophores in polydimethylsiloxane. Macromolecules 51, 9177–9183 (2018).

    CAS  Google Scholar 

  8. Lin, Y., Barbee, M. H., Chang, C.-C. & Craig, S. L. Regiochemical effects on mechanophore activation in bulk materials. J. Am. Chem. Soc. 140, 15969–15975 (2018).

    CAS  PubMed  Google Scholar 

  9. Yildiz, D. et al. Anti‐Stokes stress sensing: mechanochemical activation of triplet–triplet annihilation photon upconversion. Angew. Chem. Int. Ed. 58, 12919–12923 (2019).

    CAS  Google Scholar 

  10. Kosuge, T. et al. Multicolor mechanochromism of a polymer/silica composite with dual distinct mechanophores. J. Am. Chem. Soc. 141, 1898–1902 (2019).

    CAS  PubMed  Google Scholar 

  11. Wang, J., Piskun, I. & Craig, S. L. Mechanochemical strengthening of a multi-mechanophore benzocyclobutene polymer. ACS Macro Lett. 4, 834–837 (2015).

    CAS  Google Scholar 

  12. Matsuda, T., Kawakami, R., Namba, R., Nakajima, T. & Gong, J. P. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science 363, 504–508 (2019).

    CAS  PubMed  Google Scholar 

  13. Huang, W. et al. Maleimide–thiol adducts stabilized through stretching. Nat. Chem. 11, 310–319 (2019).

    CAS  PubMed  Google Scholar 

  14. Chen, Z. et al. Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357, 475–479 (2017).

    CAS  PubMed  Google Scholar 

  15. Sha, Y. et al. Quantitative and mechanistic mechanochemistry in ferrocene dissociation. ACS Macro Lett. 7, 1174–1179 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Giannantonio, M. et al. Triggered metal ion release and oxidation: ferrocene as a mechanophore in polymers. Angew. Chem. Int. Ed. 57, 11445–11450 (2018).

    CAS  Google Scholar 

  17. Sha, Y. et al. Generalizing metallocene mechanochemistry to ruthenocene mechanophores. Chem. Sci. 10, 4959–4965 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, J. et al. Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry. Nat. Chem. 7, 323–327 (2015).

    CAS  PubMed  Google Scholar 

  19. Grandbois, M., Beyer, M., Rief, M., Clausen-Schaumann, H. & Gaub, H. E. How strong is a covalent bond? Science 283, 1727–1730 (1999).

    CAS  PubMed  Google Scholar 

  20. Kouznetsova, T. B., Wang, J. & Craig, S. L. Combined constant-force and constant-velocity single-molecule force spectroscopy of the conrotatory ring opening reaction of benzocyclobutene. ChemPhysChem 18, 1486–1489 (2017).

    CAS  PubMed  Google Scholar 

  21. Pill, M. F. et al. Mechanochemical cycloreversion of cyclobutane observed at the single molecule level. Chem. Eur. J. 22, 12034–12039 (2016).

    CAS  PubMed  Google Scholar 

  22. Schlierf, M., Li, H. & Fernandez, J. M. The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc. Natl Acad. Sci. USA 101, 7299–7304 (2004).

    CAS  PubMed  Google Scholar 

  23. Gossweiler, G. R., Kouznetsova, T. B. & Craig, S. L. Force-rate characterization of two spiropyran-based molecular force probes. J. Am. Chem. Soc. 137, 6148–6151 (2015).

    CAS  PubMed  Google Scholar 

  24. Beyer, M. K. The mechanical strength of a covalent bond calculated by density functional theory. J. Chem. Phys. 112, 7307–7312 (2000).

    CAS  Google Scholar 

  25. Lin, Y., Kouznetsova, T. B., Chang, C.-C. & Craig, S. L. Enhanced polymer mechanical degradation through mechanochemically unveiled lactonization. Nat. Commun. 11, 4987 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lenhardt, J. M. et al. Mechanistic insights into the sonochemical activation of multimechanophore cyclopropanated polybutadiene polymers. Macromolecules 48, 6396–6403 (2015).

    CAS  Google Scholar 

  27. Albrecht, C. et al. DNA: a programmable force sensor. Science 301, 367–370 (2003).

    CAS  PubMed  Google Scholar 

  28. Brockwell, D. J. et al. Pulling geometry defines the mechanical resistance of a β-sheet protein. Nat. Struct. Mol. Biol. 10, 731–737 (2003).

    CAS  Google Scholar 

  29. Bailey, A. & Mosey, N. J. Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: a case study of the ring opening of 1,3-cyclohexadiene. J. Chem. Phys. 136, 01B613 (2012).

    Google Scholar 

  30. Kryger, M. J., Munaretto, A. M. & Moore, J. S. Structure–mechanochemical activity relationships for cyclobutane mechanophores. J. Am. Chem. Soc. 133, 18992–18998 (2011).

    CAS  PubMed  Google Scholar 

  31. Konda, S. S. M. et al. Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. J. Am. Chem. Soc. 135, 12722–12729 (2013).

    CAS  PubMed  Google Scholar 

  32. Jacobs, M. J., Schneider, G. & Blank, K. G. Mechanical reversibility of strain‐promoted azide–alkyne cycloaddition reactions. Angew. Chem. Int. Ed. 55, 2899–2902 (2016).

    CAS  Google Scholar 

  33. Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry (Univ. Science Books, 2006).

  34. Bell, G. I. Models for the specific adhesion of cells to cells. Science 200, 618–627 (1978).

    CAS  PubMed  Google Scholar 

  35. Kauzmann, W. & Eyring, H. The viscous flow of large molecules. J. Am. Chem. Soc. 62, 3113–3125 (1940).

    CAS  Google Scholar 

  36. Dudko, O. K., Hummer, G. & Szabo, A. Intrinsic rates and activation free energies from single-molecule pulling experiments. Phys. Rev. Lett. 96, 108101 (2006).

    PubMed  Google Scholar 

  37. Hummer, G. & Szabo, A. Kinetics from nonequilibrium single-molecule pulling experiments. Biophys. J. 85, 5–15 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hummer, G. & Szabo, A. Free energy profiles from single-molecule pulling experiments. Proc. Natl Acad. Sci. USA 107, 21441–21446 (2010).

    CAS  PubMed  Google Scholar 

  39. Gossweiler, G. R. et al. Mechanochemical activation of covalent bonds in polymers with full and repeatable macroscopic shape recovery. ACS Macro Lett. 3, 216–219 (2014).

    CAS  Google Scholar 

  40. Robb, M. J. et al. Regioisomer-specific mechanochromism of naphthopyran in polymeric materials. J. Am. Chem. Soc. 138, 12328–12331 (2016).

    CAS  PubMed  Google Scholar 

  41. Fortune, W. & Mellon, M. Determination of iron with o-phenanthroline: a spectrophotometric study. Ind. Eng. Chem. Anal. Ed. 10, 60–64 (1938).

    CAS  Google Scholar 

  42. Ramirez, A. L. B. et al. Mechanochemical strengthening of a synthetic polymer in response to typically destructive shear forces. Nat. Chem. 5, 757–761 (2013).

    CAS  PubMed  Google Scholar 

  43. Zhang, H. et al. Mechanochromism and mechanical‐force‐triggered cross‐linking from a single reactive moiety incorporated into polymer chains. Angew. Chem. 128, 3092–3096 (2016).

    Google Scholar 

  44. Davis, D. A. et al. Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459, 68–72 (2009).

    CAS  PubMed  Google Scholar 

  45. Wang, Z. et al. A novel mechanochromic and photochromic polymer film: when rhodamine joins polyurethane. Adv. Mater. 27, 6469–6474 (2015).

    CAS  PubMed  Google Scholar 

  46. Chen, Y. et al. Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat. Chem. 4, 559–562 (2012).

    CAS  PubMed  Google Scholar 

  47. Clough, J. M., Balan, A., van Daal, T. L. & Sijbesma, R. P. Probing force with mechanobase‐induced chemiluminescence. Angew. Chem. Int. Ed. 55, 1445–1449 (2016).

    CAS  Google Scholar 

  48. Hillman, M., Matyevich, L., Fujita, E., Jagwani, U. & McGowan, J. Bridged ferrocenes. 9. Lithiation and subsequent reactions of 1,1’-trimethyleneferrocene. Organometallics 1, 1226–1229 (1982).

    CAS  Google Scholar 

  49. Wu, D., Lenhardt, J. M., Black, A. L., Akhremitchev, B. B. & Craig, S. L. Molecular stress relief through a force-induced irreversible extension in polymer contour length. J. Am. Chem. Soc. 132, 15936–15938 (2010).

    CAS  PubMed  Google Scholar 

  50. Klukovich, H. M., Kouznetsova, T. B., Kean, Z. S., Lenhardt, J. M. & Craig, S. L. A backbone lever-arm effect enhances polymer mechanochemistry. Nat. Chem. 5, 110–114 (2013).

    CAS  PubMed  Google Scholar 

  51. Serpe, M. J. et al. A simple and practical spreadsheet-based method to extract single-molecule dissociation kinetics from variable loading-rate force spectroscopy data. J. Phys. Chem. C 112, 19163–19167 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

The polymer synthesis, SMFS studies and mechanistic analysis formed a part of work supported by the National Science Foundation under grant no. CHE-1904016 to C.T. and S.L.C. The bulk mechanochromism and cross-linking studies formed a part of work supported by the US Army Research Laboratory and the Army Research Office under grant W911NF-15-0143 to S.L.C. In addition, C.T. acknowledges partial support from the National Science Foundation EPSCoR Program under grant no. OIA-1655740. The authors thank P. Zhang for help with the DFT calculations.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and S.L.C. conceived and designed the experiments. Y.Z., Z.W., Y.S. and Y.L. performed the synthesis. Z.W. and T.B.K. collected the AFM data. Y.Z., Z.W., T.B.K., Y.S. and C.T. analysed the data. L.S. and M.F. performed the mechanical testing. Y.S. and E.X. performed the DFT calculations. Y.Z., Y.S., C.T. and S.L.C. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Stephen L. Craig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–47 and Tables 1–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Z., Kouznetsova, T.B. et al. Distal conformational locks on ferrocene mechanophores guide reaction pathways for increased mechanochemical reactivity. Nat. Chem. 13, 56–62 (2021). https://doi.org/10.1038/s41557-020-00600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00600-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing