Skip to main content
Log in

Implementation of Ionospheric Generators in the Numerical Model of the Global Electric Circuit

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The consistent inclusion of global electric circuit sources of ionospheric and magnetospheric origin in distributed numerical models of the circuit is discussed. It is shown that the most natural approach to this inclusion is to introduce into the boundary conditions at the outer boundary of the model atmosphere the corresponding perturbation of the potential specified up to an unknown constant. As an example of the implementation of this approach, the solution of a model problem on a high-latitude magnetospheric convective generator with the use of a three-dimensional numerical model of the global electric circuit is demonstrated. It is shown that the specified potential perturbation in polar regions is projected into the lower layers of the atmosphere with preservation of their structure, which is a consequence of the quasi-one-dimensionality of the problem under the conditions of slow variation in all parameters with latitude and longitude at an approximately constant profile of conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Alzetta, G., Arndt, D., Bangerth, W., et al., The deal.II library, Version 9.0, J. Numer. Math., 2018, vol. 26, no. 4, pp. 173–183.

    Article  Google Scholar 

  2. Anisimov, S.V. and Mareev, E.A., Geophysical studies of the global electric circuit, Izv., Phys. Solid Earth, 2008, vol. 44, no. 10, pp. 760–769.

    Article  Google Scholar 

  3. Bangerth, W., Hartmann, R., and Kanschat, G., Deal.II—A general purpose object-oriented finite element library, ACM Trans. Math. Software, 2007, vol. 33, no. 4, id 24.

  4. Baumgaertner, A.J.G., Thayer, J.P., Neely, R.R. III, et al., Toward a comprehensive global electric circuit model: Atmospheric conductivity and its variability in CESM1(WACCM) model simulations, J. Geophys. Res. Atmos., 2013, vol. 118, no. 16, pp. 9221–9232.

    Article  Google Scholar 

  5. Baumgaertner, A.J.G., Lucas, G.M., Thayer, J.P., et al., On the role of clouds in the fair weather part of the global electric circuit, Atmos. Chem. Phys., 2014, vol. 14, no. 16, pp. 8599–8610.

    Article  Google Scholar 

  6. Bayona, V., Flyer, N., Lucas, G.M., and Baumgaertner, A.J.G., A 3-D RBF-FD solver for modeling the atmospheric global electric circuit with topography (GEC-RBFFD v1.0), Geosci. Model Dev., 2015, vol. 8, no. 10, pp. 3007–3020.

    Article  Google Scholar 

  7. Browning, G.L., Tzur, I., and Roble, R.G., A global time-dependent model of thunderstorm electricity. Part I: mathematical properties of the physical and numerical models, J. Atmos. Sci., 1987, vol. 44, no. 15, pp. 2166–2177.

    Article  Google Scholar 

  8. Dejnakarintra, M., Inan, U.S., and Carpenter, D.L., Transient tropospheric electric fields resulting from sudden changes in ionospheric conductivity, J. Geophys. Res., 1985, vol. 90, no. A12, pp. 12271–12281.

    Article  Google Scholar 

  9. Denisenko, V.V. and Pomozov, E.V., Calculation of global electric fields in Earth’s atmosphere, Vychisl. Tekhnol., 2010, vol. 15, no. 5, pp. 34–50.

    Google Scholar 

  10. Denisenko, V.V., Ampferer, M., Pomozov, E.V., et al., On electric field penetration from ground into the ionosphere, J. Atmos. Sol.-Terr. Phys., 2013, vol. 102, pp. 341–353.

    Article  Google Scholar 

  11. Denisenko, V.V., Nesterov, S.A., Boudjada, M.Y., et al., A mathematical model of quasistationary electric field penetration from ground to the ionosphere with inclined magnetic field, J. Atmos. Sol.-Terr. Phys., 2018, vol. 179, pp. 527–537.

    Article  Google Scholar 

  12. Dutra, S.L.G., Gonzalez, A.L.C., Gonzalez, W.D., et al., Downward mapping of quasi-static ionospheric electric fields at low latitudes during fair weather, J. Atmos. Sol.-Terr. Phys., 1992, vol. 54, nos. 3–4, pp. 223–230.

    Article  Google Scholar 

  13. Hays, P.B. and Roble, R.G., A quasi-static model of global atmospheric electricity: 1. The lower atmosphere, J. Geophys. Res., 1979, vol. 84, no. A7, pp. 3291–3305.

    Article  Google Scholar 

  14. Jánský, J. and Pasko, V.P., Charge balance and ionospheric potential dynamics in time-dependent global electric circuit model, J. Geophys. Res.: Space, 2014, vol. 229, no. 12, pp. 10184–10203.

    Google Scholar 

  15. Jánský, J., Lucas, G.M., Kalb, C., et al., Analysis of the diurnal variation of the global electric circuit obtained from different numerical models, J. Geophys. Res.: Atmos., 2017, vol. 122, no. 23, pp. 12906–12917.

    Article  Google Scholar 

  16. Kalb, C., Deierling, W., Baumgaertner, A., et al., Parameterizing total storm conduction currents in the community earth system model, J. Geophys. Res.: Atmos., 2016, vol. 121, no. 22, pp. 13715–13734.

    Article  Google Scholar 

  17. Kalinin, A.V. and Slyunyaev, N.N., Initial–boundary value problems for the equations of the global atmospheric electric circuit, J. Math. Anal. Appl., 2017, vol. 450, no. 1, pp. 112–136.

    Article  Google Scholar 

  18. Kalinin, A.V., Slyunyaev, N.N., Mareev, E.A., et al., Stationary and nonstationary models of the global electric circuit: Well-posedness, analytical relations, and numerical implementation, Izv., Atmos. Ocean. Phys., 2014, vol. 50, no. 3, pp. 314–322.

    Article  Google Scholar 

  19. Kartalev, M.D., Rycroft, M.J., and Papitashvili, V.O., A quantitative model of the effect of global thunderstorms on the global distribution of ionospheric electrostatic potential, J. Atmos. Sol.-Terr. Phys., 2004, vol. 66, nos. 13–14, pp. 1233–1240.

    Article  Google Scholar 

  20. Kuo, C.L., Lee, L.C., and Huba, J.D., An improved coupling model for the lithosphere–atmosphere–ionosphere system, J. Geophys. Res.: Space, 2014, vol. 119, no. 4, pp. 3189–3205.

    Article  Google Scholar 

  21. Lucas, G.M., Baumgaertner, A.J.G., and Thayer, J.P., A global electric circuit model within a community climate model, J. Geophys. Res.: Atmos., 2015, vol. 120, no. 23, pp. 12054–12066.

    Google Scholar 

  22. Makino, M. and Ogawa, T., Responses of atmospheric electric field and air–earth current to variations of conductivity profiles, J. Atmos. Terr. Phys., 1984, vol. 46, no. 5, pp. 431–445.

    Article  Google Scholar 

  23. Mareev, E.A., Global electric circuit research: Achievements and prospects, Phys.-Usp., 2010, vol. 53, no. 5, pp. 504–511.

    Article  Google Scholar 

  24. Mareev, E.A. and Volodin, E.M., Variation of the global electric circuit and ionospheric potential in a general circulation model, Geophys. Res. Lett., 2014, vol. 41, no. 24, pp. 9009–9016.

    Article  Google Scholar 

  25. Morozov, V.N., Model of the nonstationary electric field in the lower atmosphere, Geomagn. Aeron. (Engl. Transl.), 2005, vol. 45, no. 2, pp. 253–262.

  26. Morozov, V.N., Penetration of nonstationary ionospheric electric fields into lower atmospheric layers in the global electric circuit model, Geomagn. Aeron. (Engl. Transl.), 2018, vol. 58, no. 1, pp. 113–118.

  27. Odzimek, A., Lester, M., and Kubicki, M., EGATEC: A new high-resolution engineering model of the global atmospheric electric circuit-currents in the lower atmosphere, J. Geophys. Res., 2010, vol. 115, no. D18, D18207.

    Article  Google Scholar 

  28. Park, C.G., Downward mapping of high-latitude ionospheric electric fields to the ground, J. Geophys. Res., 1976, vol. 81, no. 1, pp. 168–174.

    Article  Google Scholar 

  29. Park, C.G. and Dejnakarintra, M., Penetration of thundercloud electric fields into the ionosphere and magnetosphere: 1. Middle and subauroral latitudes, J. Geophys. Res., 1973, vol. 78, no. 28, pp. 6623–6633.

    Article  Google Scholar 

  30. Roble, R.G. and Hays, P.B., A quasi-static model of global atmospheric electricity: 2. Electrical coupling between the upper and lower atmosphere, J. Geophys. Res., 1979, vol. 84, no. A12, pp. 7247–7256.

    Article  Google Scholar 

  31. Rycroft, M.J., Harrison, R.G., Nicoll, K.A., et al., An overview of Earth’s global electric circuit and atmospheric conductivity, Space Sci. Rev., 2008, vol. 137, nos. 1–4, pp. 83–105.

    Article  Google Scholar 

  32. Slyunyaev, N.N., Mareev, E.A., and Zhidkov, A.A., On the variation of the ionospheric potential due to large-scale radioactivity enhancement and solar activity, J. Geophys. Res.: Space, 2015, vol. 120, no. 8, pp. 7060–7082.

    Article  Google Scholar 

  33. Stansbery, E.K., Few, A.A., and Geis, P.B., A global model of thunderstorm electricity, J. Geophys. Res., 1993, vol. 98, no. D9, pp. 16591–16603.

    Article  Google Scholar 

  34. U.S. Standard Atmosphere, Washington, DC: U.S. Government Printing Office, 1976.

  35. Tinsley, B.A. and Zhou, L., Initial results of a global circuit model with variable stratospheric and tropospheric aerosols, J. Geophys. Res., 2006, vol. 111, no. D16, D16205.

    Article  Google Scholar 

  36. Volland, H., Mapping of the electric field of the Sq current into the lower atmosphere, J. Geophys. Res., 1972, vol. 77, no. 10, pp. 1961–1965.

    Article  Google Scholar 

  37. Volland, H., Atmospheric Electrodynamics. Physics and Chemistry in Space, Berlin, Heidelberg: Springer, 1984.

    Book  Google Scholar 

  38. Werner, D.H. and Ferraro, A.J., A finite difference solution of the polar electrojet current mapping boundary value problem, J. Geophys. Res., 1991, vol. 96, no. A2, pp. 1369–1378.

    Article  Google Scholar 

  39. Williams, E.R., The global electrical circuit: A review, Atmos. Res., 2009, vol. 91, nos. 2–4, pp. 140–152.

    Article  Google Scholar 

  40. Williams, E. and Mareev, E., Recent progress on the global electrical circuit, Atmos. Res., 2014, vols. 135–136, pp. 208–227.

    Article  Google Scholar 

  41. Wilson, C.T.R., Investigations on lightning discharges and on the electric field of thunderstorms, Philos. Trans. R. Soc., A, 1921, vol. 221, pp. 73–115.

  42. Wilson, C.T.R., The electric field of a thundercloud and some of its effects, Proc. Phys. R. Soc. London, Ser. A, 1924, vol. 37, pp. 32D–37D.

    Google Scholar 

  43. Zhou, L. and Tinsley, B.A., Production of space charge at the boundaries of layer clouds, J. Geophys. Res., 2007, vol. 112, no. D11, D11203.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to E.A. Mareev for the helpful remarks in the preparation of this work.

Funding

We are grateful to the Russian Science Foundation for its support of this study (project no. 18-77-10061). The work was carried out by scientists of the Earth’s Electromagnetic Environment Laboratory under the support of the Ministry of Education and Science, agreement no. 075-15-2019-1892.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to F. A. Kuterin or N. N. Slyunyaev.

Additional information

Translated by A. Nikol’skii

Appendices

UNIQUENESS OF THE SOLUTION OF EQS. (4)(6)

Let \({{\varphi }_{1}}\left( {\mathbf{r}} \right)\) and \({{\varphi }_{2}}\left( {\mathbf{r}} \right)\) be two solutions of problem (4)–(6) with constants \({{U}_{1}}\) and \({{U}_{2}}\), respectively. Then, for the difference \(\delta \varphi \left( {\mathbf{r}} \right) = {{\varphi }_{1}}\left( {\mathbf{r}} \right) - {{\varphi }_{2}}\left( {\mathbf{r}} \right)\), we can write the system of equations

$${\text{div}}\left( {\sigma \left( {\mathbf{r}} \right){\text{grad}}\delta \varphi \left( {\mathbf{r}} \right)} \right) = 0,$$
(A.1)
$$\oint\limits_{{{{\Gamma }}_{1}}} {\sigma \left( {\mathbf{r}} \right){\text{grad}}\delta \varphi \left( {\mathbf{r}} \right) \cdot {\mathbf{n}}\left( {\mathbf{r}} \right){\text{ds}}\left( {\mathbf{r}} \right)} = 0,$$
(A.2)
$${{\left. {\delta \varphi \left( {\mathbf{r}} \right)} \right|}_{{{{{\Gamma }}_{1}}}}} = 0,\,\,\,\,{{\left. {\delta \varphi \left( {\mathbf{r}} \right)} \right|}_{{{{{\Gamma }}_{2}}}}} = \delta U$$
(A.3)

with \(\delta U = {{U}_{1}} - {{U}_{2}}.\) Integrating Eq. (A.1) over the region Ω, passing to the integral over the boundary, and using relationship (A.2), we obtain in addition

$$\oint\limits_{{{{\Gamma }}_{2}}} {\sigma \left( {\mathbf{r}} \right){\text{grad}}\delta \varphi \left( {\mathbf{r}} \right) \cdot {\mathbf{n}}\left( {\mathbf{r}} \right){\text{ds}}\left( {\mathbf{r}} \right)} = 0.$$
(A.4)

Note that in the right-hand side of the identity (here and below, \({\text{d}}{\mathbf{r}}\) points to a volume integral)

$$\begin{gathered} \int\limits_{\Omega } {\sigma \left( {\mathbf{r}} \right){{{\left| {{\text{grad}}\delta \varphi \left( {\mathbf{r}} \right)} \right|}}^{2}}{\text{d}}{\mathbf{r}}} \\ = \int\limits_{\Omega } {{\text{div}}\left( {\delta \varphi \left( {\mathbf{r}} \right)~\sigma \left( {\mathbf{r}} \right){\text{grad}}\delta \varphi \left( {\mathbf{r}} \right)} \right){\text{d}}{\mathbf{r}}} \\ - \,\,\int\limits_{\Omega } {\delta \varphi \left( {\mathbf{r}} \right){\text{div}}\left( {\sigma \left( {\mathbf{r}} \right){\text{grad}}\delta \varphi \left( {\mathbf{r}} \right)} \right){\text{d}}{\mathbf{r}}} \\ \end{gathered} $$

the second summand equals zero by virtue of (A.1) and the first can be worked out to (here and below, we suppose that the vector \({\mathbf{n}}\left( {\mathbf{r}} \right)\) is directed outwards relative to the region Ω both on Γ1 and on Γ2)

$$\begin{gathered} \int\limits_{\Omega } {{\text{div}}\left( {\delta \varphi \left( {\mathbf{r}} \right)~\sigma \left( {\mathbf{r}} \right){\text{grad}}\delta \varphi \left( {\mathbf{r}} \right)} \right){\text{d}}{\mathbf{r}}} \\ = \oint\limits_{{{{\Gamma }}_{1}} \cup {{{\Gamma }}_{2}}} {\delta \varphi \left( {\mathbf{r}} \right)~\sigma \left( {\mathbf{r}} \right){\text{grad}}\delta \varphi \left( {\mathbf{r}} \right) \cdot {\mathbf{n}}\left( {\mathbf{r}} \right){\text{ds}}\left( {\mathbf{r}} \right)} , \\ \end{gathered} $$

which also equals zero by virtue of (A.3) and (A.4). Therefore,

$$\int\limits_{\Omega } {\sigma \left( {\mathbf{r}} \right){{{\left| {{\text{grad}}\delta \varphi \left( {\mathbf{r}} \right)} \right|}}^{2}}{\text{d}}{\mathbf{r}}} = 0,$$

which implies \(\delta \varphi \left( {\mathbf{r}} \right) = {\text{const}}{\text{.}}\) However, together with the first equation from (A.3), this means that \(\delta \varphi \left( {\mathbf{r}} \right) \equiv 0,\) i.e., \({{\varphi }_{1}}\left( {\mathbf{r}} \right) \equiv {{\varphi }_{2}}\left( {\mathbf{r}} \right)\) and \({{U}_{1}} = {{U}_{2}}.\) A rigorous proof of the existence and uniqueness of the solution for problem (4)–(6) in an appropriate functional space was presented by Kalinin and Slyunyaev (2017).

NUMERICAL SOLUTION OF PROBLEMS (7)–(8) AND (9)–(10)

Since problem (9)–(10) can be considered a particular case of problem (7)–(8), it is sufficient to implement the solve for problem (7)–(8). To solve this problem, we use the finite-element method.

First, let us formulate an equivalent problem in the form of an integral identity. It is easy to see that the problem of solving Eq. (7) is equivalent to the problem of searching for a function \(\varphi \left( {\mathbf{r}} \right)\) that satisfies the integral relationship

$$\begin{gathered} \int\limits_{\Omega } {\psi \left( {\mathbf{r}} \right){\text{div}}\left( {\sigma \left( {\mathbf{r}} \right){\text{grad}}\varphi \left( {\mathbf{r}} \right)} \right){\text{d}}{\mathbf{r}}} \\ = \int\limits_{\Omega } {\psi \left( {\mathbf{r}} \right){\text{div }}{{{\mathbf{j}}}^{{{\text{source}}}}}\left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}}} \\ \end{gathered} $$
(B.1)

for any function \(\psi \left( {\mathbf{r}} \right)\) obeying the condition

$${{\left. {\psi \left( {\mathbf{r}} \right)} \right|}_{{{{{\Gamma }}_{1}}}}} = 0,\,\,\,\,{{\left. {\psi \left( {\mathbf{r}} \right)} \right|}_{{{{{\Gamma }}_{2}}}}} = 0.$$
(B.2)

Rewriting identity (B.1) in the form

$$\begin{gathered} \int\limits_{\Omega } {{\text{div}}\left( {\psi \left( {\mathbf{r}} \right)~\sigma \left( {\mathbf{r}} \right){\text{ grad}}\varphi \left( {\mathbf{r}} \right)} \right){\text{d}}{\mathbf{r}}} \\ - \,\,\int\limits_{\Omega } {\sigma \left( {\mathbf{r}} \right){\text{grad}}\varphi \left( {\mathbf{r}} \right) \cdot {\text{grad}}\psi \left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}}} \\ = \int\limits_{\Omega } {{\text{div}}\left( {\psi \left( {\mathbf{r}} \right)~{{{\mathbf{j}}}^{{{\text{source}}}}}\left( {\mathbf{r}} \right)} \right){\text{d}}{\mathbf{r}}} - \int\limits_{\Omega } {{{{\mathbf{j}}}^{{{\text{source}}}}}\left( {\mathbf{r}} \right) \cdot {\text{grad}}\psi \left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}}} \\ \end{gathered} $$

and passing to integrals over the boundary, we obtain

$$\begin{gathered} \oint\limits_{{{{\Gamma }}_{1}} \cup {{{\Gamma }}_{2}}} {\psi \left( {\mathbf{r}} \right)~\sigma \left( {\mathbf{r}} \right){\text{grad}}\varphi \left( {\mathbf{r}} \right) \cdot {\mathbf{n}}\left( {\mathbf{r}} \right){\text{ds}}\left( {\mathbf{r}} \right)} \\ - \,\,\int\limits_{\Omega } {\sigma \left( {\mathbf{r}} \right){\text{grad}}\varphi \left( {\mathbf{r}} \right) \cdot {\text{grad}}\psi \left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}}} \\ = \oint\limits_{{{{\Gamma }}_{1}} \cup {{{\Gamma }}_{2}}} {\psi \left( {\mathbf{r}} \right)~{{{\mathbf{j}}}^{{{\text{source}}}}}\left( {\mathbf{r}} \right) \cdot {\mathbf{n}}\left( {\mathbf{r}} \right){\text{ds}}\left( {\mathbf{r}} \right)} \\ - \,\,\int\limits_{\Omega } {{{{\mathbf{j}}}^{{{\text{source}}}}}\left( {\mathbf{r}} \right) \cdot {\text{grad}}\psi \left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}}} , \\ \end{gathered} $$

which, with allowance for conditions (B.2), yields the final identity equivalent to (7),

$$\begin{gathered} \int\limits_{\Omega } {\sigma \left( {\mathbf{r}} \right){\text{grad}}\varphi \left( {\mathbf{r}} \right) \cdot {\text{grad}}\psi \left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}}} \\ = \int\limits_{\Omega } {{{{\mathbf{j}}}^{{{\text{source}}}}}\left( {\mathbf{r}} \right) \cdot {\text{grad}}\psi \left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}},} \\ \end{gathered} $$
(B.3)

for all functions \(\psi \left( {\mathbf{r}} \right)\) satisfying (B.2). A more rigorous proof of the equivalence of relationship (B.3) to Eq. (7) was presented (e.g., Kalinin and Slyunyaev, 2017).

Let us now use the finite-element method. We search for solution of problem (7)–(8) in the form

$$\varphi \left( {\mathbf{r}} \right) \approx \sum\limits_{i = 1}^N {{{\varphi }_{i}}{{\psi }_{i}}\left( {\mathbf{r}} \right)} = \sum\limits_{i = 1}^M {{{\varphi }_{i}}{{\psi }_{i}}\left( {\mathbf{r}} \right)} + \sum\limits_{i = M + 1}^N {{{\varphi }_{i}}{{\psi }_{i}}\left( {\mathbf{r}} \right)} ,$$

where \({{\psi }_{1}}\left( {\mathbf{r}} \right),{{\psi }_{2}}\left( {\mathbf{r}} \right), \ldots ,{{\psi }_{N}}\left( {\mathbf{r}} \right)\) are linear Lagrangian finite elements in the region Ω (they are enumerated so that only first M of them are set to zero at the boundary) and \({{\varphi }_{1}},{{\varphi }_{2}}, \ldots ,{{\varphi }_{N}}\) are unknown coefficients (degrees of freedom). Then, identity (B.3) can be approximated with the equations (\(j = 1,{{\;}}2, \ldots ,M\))

$$\begin{gathered} \int\limits_{\Omega } {\sigma \left( {\mathbf{r}} \right)} \left( {\sum\limits_{i = 1}^N {{{\varphi }_{i}}{\text{grad}}{{\psi }_{i}}\left( {\mathbf{r}} \right)} } \right) \cdot {\text{grad}}{{\psi }_{j}}\left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}} \\ = \int\limits_{\Omega } {{{{\mathbf{j}}}^{{{\text{source}}}}}\left( {\mathbf{r}} \right) \cdot {\text{grad}}{{\psi }_{j}}\left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}}} \\ \end{gathered} $$

—in other words, the problem is reduced to a system of linear equations (\(j = 1,{{\;}}2, \ldots ,M\))

$$\sum\limits_{i = 1}^N {{{A}_{{ji}}}{{\varphi }_{i}}} = {{b}_{j}},$$

where

$${{A}_{{ji}}} = \sum\limits_{C \in {{T}_{{\Omega }}}} {\int\limits_C {\sigma \left( {\mathbf{r}} \right){\text{grad}}{{\psi }_{i}}\left( {\mathbf{r}} \right) \cdot {\text{grad}}{{\psi }_{j}}\left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}}} } $$
(B.4)

and

$${{b}_{j}} = \sum\limits_{C \in {{T}_{{\Omega }}}} {\int\limits_C {{{{\mathbf{j}}}^{{{\text{source}}}}}\left( {\mathbf{r}} \right) \cdot {\text{grad}}{{\psi }_{j}}\left( {\mathbf{r}} \right){\text{d}}{\mathbf{r}}} } ;$$
(B.5)

here, \({{T}_{{\Omega }}}\) denotes triangulation (i.e., a set of cells) of the whole Ω region and the variable C enumerates the corresponding cells. Boundary conditions (8) are taken into account by adding \(N - M\) equations of the form \({{\varphi }_{i}} = 0\) or \({{\varphi }_{i}} = {{\varphi }_{{{\text{source}}}}}\left( {{{{\mathbf{r}}}_{i}}} \right)\) into the system (depending on whether the degree of freedom corresponds to the component of the boundary Γ1 or to the component of the boundary Γ2; \({{{\mathbf{r}}}_{i}}\) are coordinates of the triangulation node corresponding to \({{\varphi }_{i}}\)) for \(i = M + 1,M + 2, \ldots ,N.\)

Integrals over cells in (B.4) and (B.5) are calculated with the five-point Gaussian quadrature rule with respect to each coordinate. The integrals over the outer boundary of the atmosphere that enter into relationship (11) are reduced with the finite-element method to integrals over cells F of the triangulation of this boundary \({{T}_{{{{{\Gamma }}_{2}}}}}{\text{:}}\)

$$\begin{gathered} \oint\limits_{{{{\Gamma }}_{2}}} {\sigma \left( {\mathbf{r}} \right){\text{grad}}\varphi \left( {\mathbf{r}} \right) \cdot {\mathbf{n}}\left( {\mathbf{r}} \right){\text{ds}}\left( {\mathbf{r}} \right)} \\ = \oint\limits_{{{{\Gamma }}_{2}}} {\sigma \left( {\mathbf{r}} \right)\left( {\sum\limits_{i = 1}^N {{{\varphi }_{i}}{\text{grad}}{{\psi }_{i}}\left( {\mathbf{r}} \right)} } \right)} \cdot {\mathbf{n}}\left( {\mathbf{r}} \right){\text{ds}}\left( {\mathbf{r}} \right) = \sum\limits_{i = 1}^N {{{k}_{i}}{{\varphi }_{i}}} , \\ \end{gathered} $$

where

$${{k}_{i}} = \sum\limits_{F \in {{T}_{{{{{\Gamma }}_{2}}}}}} {\oint\limits_F {\sigma \left( {\mathbf{r}} \right){\text{grad}}{{\psi }_{i}}\left( {\mathbf{r}} \right) \cdot {\mathbf{n}}\left( {\mathbf{r}} \right){\text{ds}}\left( {\mathbf{r}} \right)} } ;$$

the integrals over cells in the last expression are also calculated with the five-point Gaussian quadrature rule with respect to each coordinate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuterin, F.A., Slyunyaev, N.N. Implementation of Ionospheric Generators in the Numerical Model of the Global Electric Circuit. Geomagn. Aeron. 60, 768–780 (2020). https://doi.org/10.1134/S0016793220060080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220060080

Navigation