Skip to main content
Log in

Ion Pressure in Different Regions of the Dayside Auroral Precipitation

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The ion pressure in the regions of ionospheric projections of the plasma mantle, polar cusp, low-latitude boundary layer, and the region of structured precipitation of the auroral oval during magnetic calm is studied based on data from the DMSP F6 and F7 low-altitude spacecraft. It is shown that the level of ion pressure in all of these regions does not depend on either the polarity or the value of the Bz component of the IMF. The ion pressure in the mantle varies from 0.02 to 0.06 nPa and does not depend on the magnitude of the solar wind dynamic pressure. The average pressure level is \(\left\langle {Pm} \right\rangle \) = 0.03 ± 0.01 nPa. In the cusp area at IMF Bz > 0, the ion pressure (Pc) does not depend on the solar wind dynamic pressure (Psw), while the pressure at IMF Bz < 0 increases significantly with the increasing in Psw. The average pressure level is \(\left\langle {Pc} \right\rangle \) = 1.0 ± 0.3 nPa, which is almost two orders of magnitude higher than that in the mantle. The ion pressure also increases with the solar wind dynamic pressure in both the LLBL and the auroral oval precipitation (AOP). The average pressure in the LLBL is \(\left\langle {{{P}_{L}}} \right\rangle \) = 0.27 ± 0.07 nPa, while in the AOP region its average value is two times lower. The MLT pressure pattern in LLBL shows a pronounced increase in the noon sector (~11–14 MLT), the value of which increases with increasing in the solar wind dynamic pressure. In the AOP region the pressure is distributed over MLT fairly evenly, which results in a significant pressure difference (ΔP = PLPA) in the noon sector between the low-latitude boundary layer and the auroral oval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Antonova, E.E. and Ganushkina, N.Y., Azimuthal hot plasma pressure gradients and dawn-dusk electric field formation, J. Atmos. Sol.-Terr. Phys., 1997, vol. 59, pp. 1343–1354. https://doi.org/10.1016/S1364-6826(96)00169-1

    Article  Google Scholar 

  2. Antonova, E.E., Kirpichev, I.P., Vovchenko, V.V., Stepanova, M.V., Riazantsev, M.O., Pulinets, M.S., Ovchinnikov, I.L., and Znatkova, S.S., Characteristics of plasma ring, surrounding the earth at geocentric distances ~7–10RE, and magnetospheric current systems, J. Atmos. Sol.-Terr. Phys., 2013, vol. 99, pp. 85–91. https://doi.org/10.1016/j.jastp.2012.08.01

    Article  Google Scholar 

  3. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., and Yagodkina, O.I., Comparison of the plasma pressure distributions over the equatorial plane and at low altitudes under magnetically quiet conditions, Geomagn. Aeron. (Engl. Transl.), 2014a, vol. 54, no. 3, pp. 278–281. https://doi.org/10.7868/S001679401403002X

  4. Antonova, E.E., Kirpichev, I.P., and Stepanova, M.V., Plasma pressure distribution in the surrounding the Earth’s plasma ring and its role in the magnetospheric dynamics, J. Atmos. Sol.-Terr. Phys., 2014b, vol. 115, pp. 32–40. https://doi.org/10.1016/j.jastp.2013.12.005

    Article  Google Scholar 

  5. Antonova, E.E., Stepanova, M., Kirpichev, I.P., Ovchinnikov, I.L., Vorobjev, V.G., Yagodkina, O.I., Riazanseva, M.O., Vovchenko, V.V., Pulinets, M.S., Znatkova, S.S., and Sotnikov, N.V., Structure of magnetospheric current systems and mapping of high latitude magnetospheric regions to the ionosphere, J. Atmos. Sol.-Terr. Phys., 2018, vol. 177, pp. 103–114. https://doi.org/10.1016/j.jastp.2017.10.013

    Article  Google Scholar 

  6. Artsimovich, L.A. and Sagdeev, R.Z., Fizika plazmy dlya fizikov (Plasma Physics for Physicists), Moscow: Atomizdat, 1979.

  7. Burch, J.L., Rate of erosion of dayside magnetic flux based on a quantitative study of the dependence of polar cusp latitude on the interplanetary magnetic field, Radio Sci., 1973, vol. 8, pp. 955–961.

    Article  Google Scholar 

  8. Fairfield, D.H., Average magnetic field configuration of the outer magnetosphere, J. Geophys. Res., 1968, vol. 73, pp. 7329–7338.

    Article  Google Scholar 

  9. Goertz, C.K. and Baumjohann, W., On the thermodynamics of the plasma sheet, J. Geophys. Res., 1991, vol. 96, no. A12, pp. 20991–20998. https://doi.org/10.1029/91JA02128

    Article  Google Scholar 

  10. Gosling, J.T., Thomsen, M.F., Bame, J., Elphic, R.C., and Russel, C.T., Observations of reconnection of interplanetary and lobe magnetic field lines at the high-latitude magnetopause, J. Geophys. Res., 1991, vol. 96, no. A8, pp. 14097–14106. https://doi.org/10.1029/91JA01139

    Article  Google Scholar 

  11. Haerendel, G., Paschmann, G., Sckopke, N., Rosenbauer, H., and Hedgecock, P.C., The frontside boundary layer of the magnetosphere and problem of reconnection, J. Geophys. Res., 1978, vol. 83, no. A7, pp. 3195–3216. https://doi.org/10.1029/JA083Ia07P03195

    Article  Google Scholar 

  12. Horwitz, J.L. and Akasofu, S.I., The response of the dayside aurora to sharp northward and southward transition of the interplanetary magnetic field and to magnetospheric substorm, J. Geophys. Res., 1977, vol. 82, no. 19, pp. 2723–2734. https://doi.org/10.1029/JA082i019p02723

    Article  Google Scholar 

  13. Kirpichev, I.P. and Antonova, E.E., Plasma pressure distribution in the equatorial plane of the Earth’s magnetosphere at geocentric distances of 6–10 R E according to the international THEMIS mission data, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 4, pp. 450–455.

  14. Kirpichev, I.P., Yagodkina, O.I., Vorobjev, V.G., and Antonova, E.E., Position of projections of the nightside auroral oval equatorward and poleward edges in the magnetosphere equatorial plane, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 4, pp. 407–414. https://doi.org/10.7868/S0016794016040064

  15. Lemaire, J., Impulsive penetration of filamentary plasma elements into the magnetospheres of the Earth and Jupiter, Planet. Space Sci., 1977, vol. 25, no. 9, pp. 877–890. https://doi.org/10.1016/0032-0633(77)90042-3

    Article  Google Scholar 

  16. Newell, P.T. and Meng, C.-I., Ionospheric projections of magnetospheric regions under low and high solar wind pressure conditions, J. Geophys. Res., 1994, vol. 99, no. A1, pp. 273–286. https://doi.org/10.1029/93JA02273

    Article  Google Scholar 

  17. Newell, P.T., Meng, C.-I., Sibeck, D.G., and Lepping, R., Some low-altitude cusp dependence on interplanetary magnetic field, J. Geophys. Res., 1989, vol. 94, pp. 8921–8927. https://doi.org/10.1029/JA094iA07p08921

    Article  Google Scholar 

  18. Newell, P.T., Wing, S., Meng, C.-I., and Sigillito, V., The auroral oval position, structure, and intensity of precipitation from 1984 onward—An automated on-line database, J. Geophys. Res., 1991a, vol. 96, no. A4, pp. 5877–5882. https://doi.org/10.1029/90JA02450

    Article  Google Scholar 

  19. Newell, P.T., Burke, W.J., Meng, C.-I., Sanchez, E.R., and Greenspan, M.E., Identification and observations of the plasma mantle at low altitude, J. Geophys. Res., 1991b, vol. 96, no. A1, pp. 35–45. https://doi.org/10.1029/90JA01760

    Article  Google Scholar 

  20. Newell, P.T., Burke, W.J., Sanchez, E.R., Meng, C.-I., Greenspan, M.E., and Clauer, C.R., The low-latitude boundary layer and the boundary plasma sheet at low altitude: Prenoon precipitation regions and convection reversal boundaries, J. Geophys. Res., 1991c, vol. 96, no. A12, pp. 21013–21023. https://doi.org/10.1029/91JA01818

    Article  Google Scholar 

  21. Panov, E.V., Büchner, J., Fränz, M., Korth, A., Savin, S.P., Rème, H., and Fornaçon, K.-H., High-latitude Earth’s magnetopause outside the cusp: Cluster observations, J. Geophys. Res., 2008, vol. 113, A01220. https://doi.org/10.1029/2006JA012123

    Article  Google Scholar 

  22. Pulinets, M.S., Kirpichev, I.P., and Antonova, E.E., Variations in plasma parameters and magnetic field upon magnetopause crossing at the main phase maximum of the magnetic storm of November 14, 2012, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 6, pp. 673–681. https://doi.org/10.7868/S0016794016060134

  23. Rossolenko, S.S., Antonova, E.E., Yermolaev, Yu.I., Verigin, M.I., Kirpichev, I.P., Borodkova, N.L., and Budnik, E.Yu., Magnetosheath turbulence and low latitude boundary layer (LLBL) formation, in Proc. XXX Annual Seminar “Physics of Auroral Phenomena”, Apatity, 2007, pp. 81–84.

  24. Rossolenko, S.S., Antonova, E.E., Yermolaev, Yu.I., et al., Turbulent fluctuations of plasma and magnetic field parameters in the magnetosheath and the low-latitude boundary layer formation: Multisatellite observations on March 2, 1996, Cosmic Res., 2008, vol. 46, no. 5, pp. 373–382.

    Article  Google Scholar 

  25. Roth, M., On impulsive penetration of solar wind plasmoids into the geomagnetic field, Planet. Space Sci., 1992, vol. 40, nos. 2–3, pp. 193–201. https://doi.org/10.1016/0032-0633(92)90057-U

    Article  Google Scholar 

  26. Sandholt, P.E., Egeland, A., Deehr, C.S., Sivjee, G.G., and Romick, G.J., Effect of interplanetary magnetic field and magnetospheric substorm variations on the dayside aurora, Planet. Space Sci., 1983, vol. 31, no. 11, pp. 1345–1362. https://doi.org/10.1061/0032-0633(83)90071-5

    Article  Google Scholar 

  27. Starkov, G.V., Rezhenov, B.V., Vorobjev, V.G., and Feldshtein, Ya.I., Planetary distribution of auroral precipitation and its relation to the zones of auroral luminosity, Geomagn. Aeron. (Engl. Transl.), 2003, vol. 43, no. 5, pp. 569–578.

  28. Stepanova, M.V., Antonova, E.E., Bosqued, J.M., Kovrazhkin, R.A., and Aubel, K.R., Asymmetry of auroral electron precipitations and its relationship to the substorm expansion phase onset, J. Geophys. Res., 2002, vol. 107, no. A7. https://doi.org/10.1029/2001JA003503

  29. Stepanova, M., Antonova, E.E., and Bosqued, J.-M., Study of plasma pressure distribution in the inner magnetosphere using low-altitude satellites and its importance for the large-scale magnetospheric dynamics, Adv. Space Res., 2006, vol. 38, no. 8, pp. 1631–1636. https://doi.org/10.1016/j.asr.2006.05.013

    Article  Google Scholar 

  30. Troshichev, O.A., Plasma pressure and fid-aligned currents in the magnetosphere, Adv. Space Res., 2004, vol. 33, pp. 729–736. https://doi.org/10.1016/S0273-1177(03)00637-9

    Article  Google Scholar 

  31. Tsyganenko, N.A. and Mukai, T., Tail plasma sheet models derived from Geotail particle data, J. Geophys. Res., 2003, vol. 108, no. A3, 1136. https://doi.org/10.1029/2002JA009707

    Article  Google Scholar 

  32. Vorobjev, V.G. and Yagodkina, O.I., Influence of the solar wind plasma density on the auroral precipitation characteristics, Geomagn. Aeron. (Engl. Transl.), 2006, vol. 46, no. 1, pp. 52–57.

  33. Vorobjev, V.G., Starkov, G.V., and Fe1dstein, Ya.I., The auroral oval during the substorm development, Planet. Space Sci., 1976, vol. 24, pp. 955–965.

    Article  Google Scholar 

  34. Vorobjev, V.G., Yagodkina, O.I., and Katkalov, Y., Auroral precipitation model and its applications to ionospheric and magnetospheric studies, J. Atmos. Sol.-Terr. Phys., 2013, vol. 102, pp. 157–171. https://doi.org/10.1016/j.jastp.2013.05.007

    Article  Google Scholar 

  35. Vorobjev, V.G., Yagodkina, O.I., and Antonova, E.E., Ion pressure at the auroral precipitation boundaries and its relationship with the solar wind dynamic pressure, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 5, pp. 543–554. https://doi.org/10.1134/S0016794019050146

  36. Wing, S. and Newell, P.T., Center plasma sheet ion properties as inferred from ionospheric observations, J. Geophys. Res., 1998, vol. 103, no. A4, pp. 6785–6800. https://doi.org/10.1029/97JA02994

    Article  Google Scholar 

  37. Xing, X., Lyons, L.R., Angelopoulos, V., Larson, D., McFadden, J., Carlson, C., Runov, A., and Auster, U., Azimuthal plasma pressure gradient in quiet time plasma sheet, Geophys. Res. Lett., 2009, vol. 36, L14105. https://doi.org/10.1029/2009GL038881

    Article  Google Scholar 

  38. Znatkova, S.S., Antonova, E.E., Zastenker, G.N., and Kirpichev, I.P., Pressure balance on the magnetopause near the subsolar point according to observational data of the THEMIS project satellites, Cosmic Res., 2011, vol. 49, no. 1, pp. 3–20.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The data from DMSP satellites were taken from (http://sd-www.jhuapl.edu). The IMF parameters and solar-wind plasma and magnetic activity indices were taken from (http://wdc.kugi.kyoto-u.ac.jp/) and (http://cdaweb. gsfc.nasa.gov/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Vorobjev.

Additional information

Translated by M. Hannibal

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorobjev, V.G., Yagodkina, O.I. & Antonova, E.E. Ion Pressure in Different Regions of the Dayside Auroral Precipitation. Geomagn. Aeron. 60, 727–736 (2020). https://doi.org/10.1134/S0016793220060146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220060146

Navigation