Skip to main content
Log in

Calogero–Sutherland system at a free fermion point

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We present two ways to obtain precise expressions for the commuting Hamiltonians of the integrable system regarded as a fermionic limit of the quantum Calogero–Sutherland system as the number of particles tends to infinity with some special values of the coupling constant \(\beta\). The construction is realized in the Fock space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Bernard, M. Gaudin, F. D. M. Haldane, and V. Pasquier, “Yang–Baxter equation in spin chains with long range interactions,” J. Phys. A: Math. Gen., 26, 5219–5236 (1993).

    Article  ADS  Google Scholar 

  2. Y. Kato and Y. Kuramoto, “Exact solution of the Sutherland model with arbitrary internal symmetry,” Phys. Rev. Lett., 74, 1222–1225 (1995); arXiv:cond-mat/9409031v2 (1994).

    Article  ADS  Google Scholar 

  3. C. F. Dunkl, “Differential-difference operators associated to reflection groups,” Trans. Amer. Math. Soc., 311, 167–183 (1989).

    Article  MathSciNet  Google Scholar 

  4. G. J. Heckman, “An elementary approach to the hypergeometric shift operators of Opdam,” Invent. Math., 103, 341–350 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  5. A. P. Polychronakos, “Exchange operator formalism for integrable systems of particles,” Phys. Rev. Lett., 69, 703–705 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  6. I. Andrić, A. Jevicki, and H. Levine, “On the large-\(N\) limit in symplectic matrix models,” Nucl. Phys. B, 215, 307–315 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Awata, Y. Matsuo, S. Odake, and J. Shiraishi, “Collective field theory, Calogero–Sutherland model, and generalized matrix models,” Phys. Lett. B, 347, 49–55 (1995); arXiv:hep-th/9411053v3 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  8. H. Awata, Y. Matsuo, and T. Yamamoto, “Collective field description of spin Calogero–Sutherland models,” J. Phys. A, 29, 3089–3098 (1996); arXiv:hep-th/9512065v3 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  9. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, Oxford (1998).

    MATH  Google Scholar 

  10. M. L. Nazarov and E. K. Sklyanin, “Integrable hierarchy of the quantum Benjamin–Ono equation,” SIGMA, 9, 078 (2013); arXiv:1309.6464v2 [nlin.SI] (2013).

    MathSciNet  MATH  Google Scholar 

  11. A. N. Sergeev and A. P. Veselov, “Dunkl operators at infinity and Calogero–Moser systems,” Internat. Math. Res. Notices, 2015, 10959–10986 (2015).

    Article  MathSciNet  Google Scholar 

  12. A. G. Abanov and P. B. Wiegmann, “Quantum hydrodynamics, the quantum Benjamin–Ono equation, and the Calogero model,” Phys. Rev. Lett., 95, 076402 (2005); arXiv:cond-mat/0504041v1 (2005).

    Article  ADS  Google Scholar 

  13. A. P. Polychronakos, “Waves and solitons in the continuum limit of the Calogero–Sutherland model,” Phys. Rev. Lett., 74, 5153–5157 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  14. S. M. Khoroshkin and M. G. Matushko, “Fermionic limit of the Calogero–Sutherland system,” J. Math. Phys., 60, 071706 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. K. Pogrebkov, “Boson–fermion correspondence and quantum integrable and dispersionless models,” Russian Math. Surveys, 58, 1003–1037 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  16. P. Rossi, “Gromov–Witten invariants of target curves via symplectic field theory,” J. Geom. Phys., 58, 931–941 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Alexandrov and A. Zabrodin, “Free fermions and tau-functions,” J. Geom. Phys., 67, 37–80 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  18. V. G. Kac, A. K. Raina, and N. Rozhkovskaya, Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras (Adv. Ser. Math. Phys., Vol. 29), World Scientific, Singapore (2013).

    Book  Google Scholar 

Download references

Acknowledgments

The author thanks S. M. Khoroshkin and A. K. Pogrebkov for the valuable remarks and fruitful discussions on the subject of the paper.

Funding

This research was supported by a grant from the Russian Science Foundation (Project No. 20-41-09009) and by the Simons Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Matushko.

Ethics declarations

The author declares no conflicts of interest.

Appendix

It was proved in Proposition 2 that the densities \( \mathcal{W} _k(z)\) are linearly expressed in terms of \(w_n(z)\) given by (3.13). The first densities \(w_n(z)\) are given in Sec. 3.3. Here, we present the expressions for the first densities \( \mathcal{W} _k(z)\),

$$\begin{aligned} \, & \mathcal{W} _0(z)=w_1(z),\qquad \mathcal{W} _1(z)=\frac{1}{2}w_2(z)-\frac{1}{2}w_1(z), \\ & \mathcal{W} _2(z)=\frac{1}{3}w_3(z)-\frac{1}{2}w_2(z)+\frac{1}{6}w_1(z), \\ & \mathcal{W} _3(z)=\frac{1}{4}w_4(z)-\frac{1}{2}w_3(z)+\frac{1}{4}w_2(z), \end{aligned}$$
and the expressions for the corresponding Hamiltonians,
$$\begin{aligned} \, \mathcal{H} _0={}&p_0,\qquad \mathcal{H} _1=\sum_{n>0}np_n\frac{ \partial }{ \partial p_n}+\frac{1}{2}(p_0^2-p_0), \\ \mathcal{H} _2={}&\sum_{n,k>0}nkp_{n+k}\frac{ \partial }{ \partial p_n}\frac{ \partial }{ \partial p_k}+ \sum_{n,k>0}(n+k)p_np_k\frac{ \partial }{ \partial p_{n+k}}+{} \\ &{}+(2p_0-1)\sum_{n>0}np_n\frac{ \partial }{ \partial p_n}+ \frac{1}{6}(2p_0^3-3p_0^2+p_0), \\ \mathcal{H} _3={}&\sum_{n,k,m>0}nkmp_{n+k+m}\frac{ \partial }{ \partial p_n} \frac{ \partial }{ \partial p_k} \frac{ \partial }{ \partial p_m} +\sum_{n,k,m>0}(n+k+m)p_np_kp_m \frac{ \partial }{ \partial p_{n+k+m}}+{} \\ &{}+\frac{3}{2}\sum_{k,m>0}\sum_{n=1}^{m+k-1}kmp_np_{m+k-n} \frac{ \partial }{ \partial p_k}\frac{ \partial }{ \partial p_m}+ \frac{1}{2}\sum_{n>0}n^3p_n\frac{ \partial }{ \partial p_n}+{} \\ &{}+\biggl(3p_0-\frac{3}{2}\biggr)\sum_{n,k>0}nkp_{n+k} \frac{ \partial }{ \partial p_n}\frac{ \partial }{ \partial p_k}+ \biggl(3p_0-\frac{3}{2}\biggr)\sum_{n,k>0}(n+k) p_np_k\frac{ \partial }{ \partial p_{n+k}}+{} \\ &{}+\biggl(3p_0^2-3p_0+\frac{1}{2}\biggr)\sum_{n>0}np_n \frac{ \partial }{ \partial p_n}+\frac{1}{4}(p_0^4-2p_0^3+p_0^2). \end{aligned}$$
The first line in the formula for the Hamiltonian \( \mathcal{H} _2\) is called a cut-and-join operator, which has applications in areas such as Hurwitz theory and knot theory.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matushko, M.G. Calogero–Sutherland system at a free fermion point. Theor Math Phys 205, 1593–1610 (2020). https://doi.org/10.1134/S0040577920120041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577920120041

Keywords

Navigation