Skip to main content

Advertisement

Log in

Effect of Co Addition on the Creep Rupture Properties of 9Cr-1.8W-xCo Weld Metals

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, the effect of Co addition on the microstructure and creep rupture properties of 9Cr-1.8W-xCo weld metals is investigated. Herein, stick electrodes were fabricated for producing weld metals with 0.5, 1.0, and 1.5 wt pct Co and without Co, which were then processed by post-welding heat treatment at 760 °C for 4 hours. The microstructures of weld metals, including the prior austenite grain size, tempered martensite lath size, delta ferrite content, and precipitate quantity and size, were characterized via optical microscopy, scanning and transmission electron microscopy, and electron backscattered diffraction. The precipitates were identified by X-ray diffraction after they were extracted from the matrix. The Curie temperature was determined via differential scanning calorimetry, which allowed the evaluation of diffusion rate as a function of Co content. The weld metals were mechanically characterized by creep rupture tests conducted at 675 °C under 150 MPa and by hardness and tensile tests conducted at room temperature as well as Charpy impact tests conducted at various temperatures from − 40 °C to 60 °C. The results obtained herein suggest that the addition of Co significantly increases the creep rupture time of 9Cr-1.8W steel (by approximately 20 times than that of Co-free steel), reduces the prior austenite grain size and tempered martensite lath size, hinders the formation of detrimental delta ferrite, and promotes the formation of precipitates with slightly larger size. Herein, the highest creep resistance from the viewpoint of creep rupture time was obtained for 9Cr-1.8W weld metal with 1.5 wt pct Co. Furthermore, the results suggest that a finer and more stable substructure is required for improving the creep resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Z. Zhang, G. Holloway and A. Marshall, Ommi 2009, vol. 6, pp. 1-14.

    CAS  Google Scholar 

  2. H.K.D.H. Bhadeshia, ISIJ International 2000, vol. 41, pp. 626-640.

    Article  Google Scholar 

  3. M. Shibuya, Y. Toda, K. Sawada, H. Kushima and K. Kimura, Materials Science and Engineering: A 2011, vol. 528, pp. 5387-5393.

    Article  CAS  Google Scholar 

  4. F. Masuyama, ISIJ international 2001, vol. 41, pp. 612-625.

    Article  CAS  Google Scholar 

  5. J. Onoro, Journal of Materials Processing Technology 2006, vol. 180, pp. 137-142.

    Article  CAS  Google Scholar 

  6. S. Sone, Report No. 72, Nippon Steel 1997.

  7. R.L. Klueh, International Materials Reviews 2005, vol. 50, pp. 287-310.

    Article  CAS  Google Scholar 

  8. R.L. Klueh and D.R. Harries, ASTM West Conshohocken, PA, 2001, p. 31,48,71.

  9. J.C. Vaillant, B. Vandenberghe, B. Hahn, H. Heuser and C. Jochum, International Journal of Pressure Vessels and Piping 2008, vol. 85, pp. 38-46.

    Article  Google Scholar 

  10. J. Hilkes and V. Gross, Bulletin of the Institute of Welding 2013, vol. 57, pp. 11-22.

    Google Scholar 

  11. W. Yan, W. Wang, Y-Y. Shan and K. Yang, Frontiers of Materials Science 2013, vol. 7, pp. 1-27.

    Article  Google Scholar 

  12. B. Arivazhagan, S. Sundaresan and M. Kamaraj, Materials Letters 2008, vol. 62, pp. 2817-2820.

    Article  CAS  Google Scholar 

  13. L. Helis, Y. Toda, T. Hara, H. Miyazaki and F. Abe, Materials Science and Engineering: A 2009, vol. 510-511, pp. 88-94.

    Article  Google Scholar 

  14. G. Chakraborty, J.G. Kumar, P. Vasantharaja, C.R. Das, S.K. Albert and K. Laha, Journal of Materials Engineering and Performance 2019, vol. 28, pp. 876-885.

    Article  CAS  Google Scholar 

  15. A. Dhooge, S. Huysmans, B. Vandenberghe and J. Vekleman, In WELDS, 2005.

  16. P. Mayr, In Faculty of Mechanical Engineering, Graz University of Technology: Austria: Ph.D. Thesis, 2007, p. 198.

  17. K. Yamada, M. Igarashi, S. Muneki and F. Abe, ISIJ international 2003, vol. 43, pp. 1438-1443.

    Article  CAS  Google Scholar 

  18. A. Barnes and D. Abson, In 2nd International Conference Intergrity of High Temperature Welds, London, 2003.

  19. A. Kipelova, M. Odnobokova, A. Belyakov and R. Kaibyshev, Metallurgical and Materials Transactions A 2012, vol. 44, pp. 577-583.

    Article  Google Scholar 

  20. Å. Gustafson and J. Ågren, ISIJ international 2001, vol. 41, pp. 356-360.

    Article  CAS  Google Scholar 

  21. R.K. Guseinov and V.N. Zikeev, Met Sci Heat Treat 1974, vol. 16, pp. 49-55.

    Article  Google Scholar 

  22. A.P. Gulyaev, V.N. Zikeev and R.K. Guseinov, Met Sci Heat Treat 1975, vol. 17, pp. 95-103.

    Article  Google Scholar 

  23. B.P. Sharov and V.N. Zikeev, Met Sci Heat Treat 1977, vol. 19, pp. 265-268.

    Article  Google Scholar 

  24. X. Wang, L-F. Zhan, Q-G. Pan, Z-J Liu, H. Liu and Y-S Tao, J. Zhejiang Univ. Sci. A 2010, vol. 11, pp. 756-760.

    Article  CAS  Google Scholar 

  25. K. Maruyama, K. Sawada and J-I Koike, ISIJ international 2001, vol. 41, pp. 641-653.

    Article  CAS  Google Scholar 

  26. V. Dudko, A. Belyakov, D. Molodov and R. Kaibyshev, Metallurgical and Materials Transactions A 2013, vol. 44, pp. 162-172.

    Article  Google Scholar 

  27. S. Wang, L. Chang, D. Lin, X. Chen and X. Hui, Metallurgical and Materials Transactions A 2014, vol. 45, pp. 4371-4385.

    Article  Google Scholar 

  28. I. Velkavrh, F. Kafexhiu, S. Klien, A. Diem and B. Podgornik, Metallurgical and Materials Transactions A 2017, vol. 48, pp. 109-125.

    Article  CAS  Google Scholar 

  29. R.N. Hajra, A.K. Rai, H.P. Tripathy, S. Raju and S. Saroja, Journal of Alloys and Compounds 2016, vol. 689, pp. 829-836.

    Article  CAS  Google Scholar 

  30. A. Výrostková, V. Homolová, J. Pecha and M. Svoboda, Materials Science and Engineering: A 2008, vol. 480, pp. 289-298.

    Article  Google Scholar 

  31. C. Pandey, M.M. Mahapatra, P. Kumar, N. Saini, J.G. Thakre, R.S. Vidyarthy and H.K. Narang, Archives of Civil and Mechanical Engineering 2018, vol. 18, pp. 713-722.

    Article  Google Scholar 

  32. J. Zhang, B. Sh. Du, X.M. Li, G.L. Qin and Y. Zou, Kovove mater 2017, vol. 55, pp. 115-121.

    Article  CAS  Google Scholar 

  33. F. Peñalba, X. Gómez-Mitxelena, J.A. Jıménez, M. Carsí and O.A. Ruano, ISIJ International 2016, vol. 56, pp. 1662-1667.

    Article  Google Scholar 

  34. S. Zhang, T. Melfi and B.K. Narayanan, Science and Technology of Welding and Joining 2016, vol. 21, pp. 147-156.

    Article  CAS  Google Scholar 

  35. K. Guguloth and N. Roy, Materials Characterization 2018, vol. 146, pp. 279-298.

    Article  CAS  Google Scholar 

  36. W.R. Tyson, B. Faucher, M. Shehata and Y.S. Hong, In Mechanical Behaviour of Materials V, Elsevier, 1988), pp. 357–64.

  37. A. Kostka, K-G. Tak, R.J. Hellmig, Y. Estrin and G. Eggeler, Acta Materialia 2007, vol. 55, pp. 539-550.

    Article  CAS  Google Scholar 

  38. J.G. Back and K.B. Surreddi, Materials Characterization 2019, vol. 157, p. 109926.

    Article  Google Scholar 

  39. L.Zeng, M. Xu, X. Ma, Y. Huang, S. Zhang, Q. Hu and J. Li, ISIJ International 2014, vol. 54, pp. 2302-2308.

    Article  CAS  Google Scholar 

  40. P. Patriarca, S.D. Harkness, J.M. Duke and L.R. Cooper, Nuclear Technology 1976, vol. 28, pp. 516-536.

    CAS  Google Scholar 

  41. F. Kabakci, In Metallurgy and Materials Engineering, Selçuk University: Ph.D. thesis Turkey, 2017.

  42. B. Arivazhagan and M. Vasudevan, Journal of Manufacturing Processes 2014, vol. 16, pp. 305-311.

    Article  Google Scholar 

  43. A. Magnee, J.M. Drapier, D. Coutsouradis, L. Habrakan and J. Dumont: Cobalt-containing high-strength steels : a critical review of the physical metallurgy of cobalt-containing high-strenght steels, and a survey of their processing, properties and uses. Brussels: Centre d’ information du cobalt, 1974.

    Google Scholar 

  44. L. Havelka, P. Mohyla and J. Vontorová, In Metal 2015 : 24th Conference on Metallurgy and Materials, Tanger: Czech Republic.

  45. S.S. Wang, D.L. Peng, L. Chang and X.D. Hui, Materials & Design 2013, vol. 50, pp. 174-180.

    Article  CAS  Google Scholar 

  46. H.G. Armaki, R. Chen, K. Maruyama and M. Igarashi, Metallurgical and Materials Transactions A 2011, vol. 42, pp. 3084-3094.

    Article  CAS  Google Scholar 

  47. T. Shrestha, M. Basirat, I. Charit, G.P. Potirniche, K.K. Rink and U. Sahaym, Journal of nuclear materials 2012, vol. 423, pp. 110-119.

    Article  CAS  Google Scholar 

  48. W. Yan, W. Wang, Y. Shan, K. Yang and W. Sha: 9-12Cr heat-resistant steels. Springer, Switzerland 2015, pp. 28.

    Book  Google Scholar 

Download references

Acknowledgments

This study was carried out as a PhD thesis by FİKRET KABAKCI in the Graduate School of Natural and Applied Science at the Selçuk University, Konya, Turkey. The authors would like to acknowledge the financial support provided by SANTEZ (University-Industry Collaboration Grant Programme-Ministry of Science, Industry and Technology) with the Grant Number of 0374.STZ.2013-2. Authors also thank Gedik Welding Company, Istanbul, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Acarer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 3, 2020; accepted October 6, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabakcı, F., Acarer, M., Baydoğan, M. et al. Effect of Co Addition on the Creep Rupture Properties of 9Cr-1.8W-xCo Weld Metals. Metall Mater Trans A 52, 129–142 (2021). https://doi.org/10.1007/s11661-020-06059-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-06059-7

Navigation