Skip to main content
Log in

Comparison of Isobutane/n-Butenes Alkylation over Y-Zeolite Catalyst in CSTR, Fixed Bed and Circulating Flow Reactors

  • RESEARCH ARTICLE
  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

Isobutane/olefin alkylation is an important route to obtain high-quality gasoline. There is an apparent interest to apply zeolite based catalysts for this process to eliminate large scale usage of liquid catalysts such as H2SO4 and HF. Solid catalysts require a specific reactor system design involving frequent catalyst regeneration and operation at low concentration of the olefin. The aim of this work was to compare different reactor types: CSTR, “once-through” fixed bed type and circulating flow reactors (CFR), which are typically considered as suitable options for industrial implementation. The experiments were done on decationated Y-zeolite catalyst. Different paraffin/olefin ratios, temperature and circulation rates were studied. Catalysts and process performance are discussed based on the catalyst lifetime and the alkylate octane number. Analysis of diffusion limitations in different reactor types and optimization of the circulation rate in CFR were done. It was found that isobutane alkylation in a circulating flow reactor shows approximately the same catalyst lifetime even at a high circulation rate not exhibiting any positive impact of back-mixing on this process. However, a circulating flow reactor has demonstrated a much better quality of alkylate with the research octane number higher by 4.9 points. Additional operational costs related to the reactor effluent recycle are fully covered by the alkylate quality improvement even at a high circulation ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Vogt, E.T.C., Whiting, G.T., Chowdhury, A.D., and Weckhuysen, B.M., Adv. Catal., 2015, vol. 58, p. 143.

    CAS  Google Scholar 

  2. Feller, A. and Lercher, J.A., Adv. Catal., 2004, vol. 48, p. 229.

    CAS  Google Scholar 

  3. Sievers, C., Zuazo, I., Guzman, A., Olindo, R., Syska, H., and Lercher, J.A., J. Catal., 2007, vol. 246, p. 315.

    Article  CAS  Google Scholar 

  4. Guzman, A., Zuazo, I., Feller, A., Olindo, R., Sievers, C., and Lercher, J.A., Micropor. Mesopor. Mater., 2005, vol. 83, p. 309.

    Article  CAS  Google Scholar 

  5. Feller, A., Guzman, A., Zuazo, I., and Lercher, J.A., J. Catal., 2004, vol. 224, p. 80.

    Article  CAS  Google Scholar 

  6. Corma, A. and Martínez, A., Catal. Rev.-Sci. Eng., 1993, vol. 35, p. 483.

    Article  CAS  Google Scholar 

  7. Corma, A., Martínez, A., and Martínez, C., Catal. Lett., 1994, vol. 28, p. 187.

    Article  CAS  Google Scholar 

  8. Li, K.W., Eckert, R.E., and Albright, L.F., Ind. Eng. Chem. Process Des. Dev., 1970, vol. 9, p. 434.

    Article  CAS  Google Scholar 

  9. Guzman, A., Zuazo, I., Feller, A., Olindo, R., Sievers, C., and Lercher, J.A., Micropor. Mesopor. Mater., 2006, vol. 97, p. 49.

    Article  CAS  Google Scholar 

  10. Sievers, C., Liebert, J.S., Stratmann, M.M., Olindo, R., and Lercher, J.A., Appl. Catal., A, 2008, vol. 336, p. 89.

  11. de Jong, K.P., Mesters, C.M.A.M., Peferoen, D.G.R., van Brugge, P.T.M., and de Groot, C., Chem. Eng. Sci., 1996, vol. 51, p. 2053.

    Article  CAS  Google Scholar 

  12. Nivarthy, G.S., Feller, A., Seshan, K., and Lercher, J.A., Micropor. Mesopor. Mater., 2000, vols. 35–36, p. 75.

    Article  Google Scholar 

  13. Klingmann, R., Josl, R., Traa, Y., Glaser, R., and Weitkamp, J., Appl. Catal., A, 2004, vol. 281, p. 215.

  14. Chen, Z., Gao, F., Ren, K., Wu, Q., Luo, Y., Zhou, H., Zhang, M., and Xu, QW., RSC Adv., 2018, vol. 8, p. 3392.

  15. Corma, A., Martínez, A., and Martínez, C., J. Catal., 1994, vol. 146, p. 185.

    Article  CAS  Google Scholar 

  16. Ginosar, D.M., Thompson, D.N., and Burch, K.C., Appl. Catal., A, 2004, vol. 262, p. 223.

  17. Dalla Costa, B.O. and Querini, C.A., Appl. Catal., A, 2010, vol. 385, p. 144.

  18. Pater, J., Cardona, F., Canaff, C., Gnep, N.S., Szabo, G., and Guisnet, M., Ind. Eng. Chem. Res., 1999, vol. 38, p. 3822.

    Article  CAS  Google Scholar 

  19. Liu, Z., Tang, X., Hu, L., and Hou, S., China Pet. Process. Petrochem. Technol., 2016, vol. 18, p. 63.

    CAS  Google Scholar 

  20. Murzin, D.Y., Engineering Catalysis, Berlin: De Gruyter, 2020, 2nd ed.

    Book  Google Scholar 

  21. Khadzhiev, S.N., Gerzeliev, I.M., Vedernikov, O.S., Kleymenov, A.V., Kondrashev, D.O., Oknina, N.V., Kuznetsov, S.E., Saitov, Z.A., and Baskhanova, M.N., Catal. Ind., 2017, vol. 9, p. 198.

    Article  Google Scholar 

  22. van Broekhoven, E.R., Mas Cabré, F. R., Bogaard, P., Klaver, G., and Vonhof, M., US Patent 5986158, 1999.

  23. van Broekhoven, E.R. and Mas Cabré, F.R., US Patent 6855856, 2005.

  24. Panattoni, G. and Querini, C.A., Stud. Surf. Sci. Catal., 2001, vol. 139, p. 181.

    Article  CAS  Google Scholar 

  25. Emeis, C.A., J. Catal., 1993, vol. 141, p. 347.

    Article  CAS  Google Scholar 

  26. Balaban, A.T., Kier, L.B., and Joshi, N., MATCH, 1992, vol. 28, p. 13.

    CAS  Google Scholar 

  27. Sladkovskiy, D.A., Kuzichkin, N.V., Semikin, K.V., Zernov, P.A., and Murzin, D.Y., Chim. Oggi–Chem. Today, 2015, vol. 33, p. 32.

    CAS  Google Scholar 

  28. Querini, C.A. and Roa, E., Appl. Catal., A, 1997, vol. 163, p. 199.

  29. Sengar, A., van Santen, R.A., Johannes, E.S., Kuipers, A.M., and Padding, J., ACS Catal., 2018, vol. 8, p. 9016.

  30. Ramaswamy, R.C., Ramachandran, P.A., and Dudukovic, M.P., Int. J. Chem. Reactor Eng., 2005, vol. 3, A4.

    Article  Google Scholar 

  31. Simpson, M., Wei, J., and Sundaresan, S., Ind. Eng. Chem. Res., 1996, vol. 35, p. 3861.

    Article  CAS  Google Scholar 

  32. Simpson, M., Wei, J., and Sundaresan, S., in Green Chemistry: Designing Chemistry for the Environment, ACS Symposium Series, vol. 626, Washington, DC: Am Chem. Soc., 1996.

  33. Umesi, N.O. and Danner, R.P., Ind. Eng. Chem. Process Des. Dev., 1981, vol. 20, p. 662.

    Article  CAS  Google Scholar 

  34. Li, Y., Liu, R., Zhao, G., Zhou, Z., Zhang, J., Shi, C., Liu, X., Zhang, X., and Zhang, S., Fuel, 2018, vol. 216, p. 686.

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed as a part of the state contract awarded on the basis of a grant of the Government of the Russian Federation for support of scientific research conducted under the supervision of leading scientists at Russian institutions of higher education, research institutions of State Academies of Sciences and state research centre of the Russian Federation on March 19, 2014 no. 14.Z50.31.0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Murzin.

Ethics declarations

The evaluation and decision of acceptance of this paper was made by the Editorial board without input of the authors or any persons affiliated with them.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sladkovskiy, D.A., Semikin, K.V., Utemov, A.V. et al. Comparison of Isobutane/n-Butenes Alkylation over Y-Zeolite Catalyst in CSTR, Fixed Bed and Circulating Flow Reactors. Ref. J. Chem. 10, 58–72 (2020). https://doi.org/10.1134/S2079978020010045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978020010045

Keywords:

Navigation