Skip to main content
Log in

Effect of Electric Field Voltage on the Efficiency of Separation of Single-Stranded DNA Fragments by Capillary Gel Electrophoresis in Polymers Based on Linear Poly(N,N-Dimethylacrylamide)

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The analysis of DNA fragments by capillary gel electrophoresis is in wide current used in the practice of research and testing laboratories primarily for highly accurate and highly sensitive identification of organisms by their DNA traces separated from biological test materials and amplified by polymerase chain reaction. A constantly growing flow of examinations performed using this method necessitates the optimization of research protocols in order to shorten the analysis time without loss of separation efficiency. The effect of electric field voltage on the separation efficiency of single-stranded DNA fragments in a length range from 60 to 1200 nucleotides in a series of polymers based on linear poly(N,N-dimethylacrylamide) was studied. The best values of electric field voltage were experimentally determined to be recommended for DNA fragment analysis on the first Russian genetic analyzer Nanophore 05 with the studied polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Slatko, B.E., Kieleczawa, J., Ju, J., Gardner, A.F., Hendrickson, C.L., and Ausubel, F.M., Curr. Protocols Mol. Biol., 2011, vol. 96, no. 1, p. 7.2.1. https://doi.org/10.1002/0471142727.mb0702s96

  2. Selva, L., del Amo, E., Brotons, P., and Muñoz-Almagro, C., J. Clin. Microbiol., 2012, vol. 50, no. 11, p. 3451. https://doi.org/10.1128/JCM.01368-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carrilho, E., Ruiz-Martinez, M.C., Berka, J., Smirnov, I., Anal. Chem., 1996, vol. 68, p. 3305. https://doi.org/10.1021/ac960411r

    Article  CAS  PubMed  Google Scholar 

  4. Al-Snan, N.R. Messaoudi, S., Babu, R.S., and Bakhiet, M., PLoS One, 2019, vol. 14, no. 8, e0220620.

    Article  CAS  Google Scholar 

  5. Aniskina, Yu.V., Malinovskaya, E.V., Shalaeva, T.V., Mitsurova, V.S., Rodionova, D.A., Kharchenko, P.N., and Shilov, I.A., Biotekhnologiya, 2018, vol. 37, no. 2, p. 54. https://doi.org/10.21519/0234-2758-2018-34-2-54-69

    Article  Google Scholar 

  6. Selyaninov, Yu.O., Egorova, I.Yu., Alekseev, Ya.I., Kazantsev, A.V., Monakhova, Yu.A., and Kolbasov, D.V., Sel’skokhoz. Biol., 2018, vol. 53, no. 2, p. 404. https://doi.org/10.15389/agrobiology.2018.2.404rus

    Article  Google Scholar 

  7. Albarghouthi, M.N. and Barron, A.E., Electrophoresis, 2000, vol. 21, p. 4096. https://doi.org/10.1002/1522-2683(200012)21:18<4096::AID-ELPS4096>3.0.CO;2-W

    Article  CAS  PubMed  Google Scholar 

  8. Geiger, M., Hogerton, A.L., and Bowser, M.T., Anal. Chem., 2012, vol. 84, no. 2, p. 577. https://doi.org/10.1021/ac203205a

    Article  CAS  PubMed  Google Scholar 

  9. Quesada, M., Curr. Opin. Biotechnol., 1997, vol. 8, no. 1, p. 82. https://doi.org/10.1016/s0958-1669(97)80162-0

    Article  CAS  PubMed  Google Scholar 

  10. Manabe, T., Chen, N., Terabe, S., Yohda, M., and Endo, I., Anal. Chem., 1994, vol. 66, no. 23, p. 4243. https://doi.org/10.1021/ac00095a020

    Article  CAS  PubMed  Google Scholar 

  11. Rosenblum, B.B., Oaks, F., Menchen, S., and Johnson, B., Nucl. Acids Res., 1997, vol. 25, no. 19, p. 3925. https://doi.org/10.1093/nar/25.19.3925

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, J., Fang, Y., Hou, J.Y., Ren, H.J., Jiang, R., Roos, P., and Dovichi, N.J., Anal. Chem., 1995, vol. 67, no. 24, p. 4589. https://doi.org/10.1021/ac00120a026

    Article  CAS  PubMed  Google Scholar 

  13. Kleparnik, K., Foret, F., Berka, J., Goetzinger, W., Miller, A.W., and Karger, B.L., Electrophoresis, 1996, vol. 17, no. 12, p. 1860. https://doi.org/10.1002/elps.1150171210

    Article  CAS  PubMed  Google Scholar 

  14. Alekseev, Ya.I., Belov, Yu.V., Malyuchenko, O.P., Monakhova, Yu.A., Natyrov, A.N., Orekhov, V.A., Konovalov, S.V., Kurochkin, V.E., and Petrov, A.I., Nauchn. Priborostr., 2012, vol. 22, no. 4, p. 86.

    CAS  Google Scholar 

  15. Luckey, J.A., Norris, T.B., and Smith, L.M., J. Phys. Chem., 1993, vol. 97, no. 12, p. 3067. https://doi.org/10.1021/j100114a038

    Article  CAS  Google Scholar 

  16. Heller, C., Electrophoresis, 2000, vol. 21, no. 3, p. 593. https://doi.org/10.1002/(sici)1522-2683(20000201)21:3<593::aid-elps593>3.0.co;2-u

    Article  CAS  PubMed  Google Scholar 

  17. Belen’kii, B.G., Vysokoeffektivnyi kapillyarnyi elektroforez (High-Performance Capillary Electrophoresis), St. Petersburg: Nauka, 2009, p. 314.

Download references

Funding

This work was carried out according to a state contract of the Ministry of Science and Higher Education of the Russian Federation no. 075-00780-19-00, on the topic no. 0074-2019-0017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bocharova.

Additional information

Translated by V. Makhlyarchuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocharova, D.V., Alekseev, Y.I. & Kurochkin, V.E. Effect of Electric Field Voltage on the Efficiency of Separation of Single-Stranded DNA Fragments by Capillary Gel Electrophoresis in Polymers Based on Linear Poly(N,N-Dimethylacrylamide). J Anal Chem 75, 1633–1637 (2020). https://doi.org/10.1134/S1061934820100032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820100032

Keywords:

Navigation