Skip to main content
Log in

Lable-Free Gold Nanoparticles in the Presence of Ammonium Pyrrolidine Dithiocarbamate as a Selective and Sensitive Silver Ion Colorimetric Probe

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, a selective and easy colorimetric probe was developed for the detection of silver ions. This system relied on the aggregation of gold nanoparticles (AuNPs) with ammonium pyrrolidine dithiocarbamate (APDC) and its anti-aggregation in the presence of silver ions. APDC caused the aggregation of AuNPs which resulted in color change from red to blue. However, in the presence of silver ions, because of their ability to complex with APDC, the aggregation of AuNPs was inhibited and color change occurred in the opposite direction by increasing Ag+ concentration (blue to red). Under optimum conditions, this system exhibited high selectivity to Ag+ over other tested metal ions. This novel probe had advantages such as wide linear range (0.05–0.9 µM) and low detection limit (20 nM). The recovery analysis of river water as real sample confirmed that the proposed colorimetric sensor could be successfully employed in the determination of Ag+ in real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Bhardwaj, V.K., Singh, N., Hundal, M.S., and Hundal, G., Tetrahedron, 2006, vol. 62, no. 33, p. 7878.

    Article  CAS  Google Scholar 

  2. Yeh, Y.-C., Creran, B., and Rotello, V.M., Nanoscale, 2012, vol. 4, no. 6, p. 1871.

    Article  CAS  Google Scholar 

  3. Du, J., Zhu, B., Peng, X., and Chen, X., Small, 2014, vol. 10, no. 17, p. 3461.

    Article  CAS  Google Scholar 

  4. Duan, J., Yin, H., Wei, R., and Wang, W., Biosens. Bioelectron., 2014, vol. 57, p. 139.

    Article  CAS  Google Scholar 

  5. Lin, C.-Y., Yu, C.-J., Lin, Y.-H., and Tseng, W.-L., Anal. Chem., 2010, vol. 82, no.16, p. 6830.

    Article  CAS  Google Scholar 

  6. Yang, C.-G., Zhang, M., and Xu, Z.-R., Anal. Methods, 2015, vol. 7, no. 3, p. 1110.

    Article  CAS  Google Scholar 

  7. Li, B., Du, Y., and Dong, S., Anal. Chim. Acta, 2009, vol. 644, nos. 1–2, p. 78.

    Article  CAS  Google Scholar 

  8. Zhan, S., Wu, Y., He, L., Wang, F., Zhan, X., Zhou, P., and Qiu, S., Anal. Methods, 2012, vol. 4, no. 12, p. 3997.

    Article  CAS  Google Scholar 

  9. Zhan, S., Xu, H., Zhan, X., Wu, Y., Wang, L., Lv, J., and Zhou, P., Microchim. Acta, 2015, vol. 182, nos. 7–8, p. 1411.

    Article  CAS  Google Scholar 

  10. Zhang, Y., Liu, W., Zhang, W., Yu, S., Yue, X., Zhu, W., Zhang, D., Wang, Y., and Wang, J., Biosens. Bioelectron., 2015, vol. 72, p. 218.

    Article  Google Scholar 

  11. Pu, W., Zhao, Z., Wu, L., Liu, Y., and Zhao, H., J. Nanosci. Nanotechnol., 2015, vol. 15, no. 8, p. 5524.

    Article  CAS  Google Scholar 

  12. Zhu, G. and Zhang, C., Analyst, 2014, vol. 139, no. 24, p. 6326.

    Article  CAS  Google Scholar 

  13. Safavi, A., Ahmadi, R., and Mohammadpour, Z., Sens. Actuators, B, 2017, vol. 242, p. 609.

    Article  CAS  Google Scholar 

  14. Frens, G., Nature, 1973, vol. 241, no. 1, p. 20.

    CAS  Google Scholar 

  15. Shang, J. and Gao, X., Chem. Soc. Rev., 2014, vol. 43, no. 21, p. 7267.

    Article  CAS  Google Scholar 

  16. Kazi, T.G., Afridi, H.I., Shah, F., Arain, S.S., Brahman, K.D., Ali, J., and Arain, M.S., Arab. J. Chem., 2016, vol. 9, no. 1, p. 105.

    Article  Google Scholar 

  17. Wang, L., Rangger, G.M., Ma, Z., Li, Q., Shuai, Z., Zojer, E., and Heimel, G., Phys. Chem. Chem. Phys., 2010, vol. 12, no. 17, p. 4287.

    Article  CAS  Google Scholar 

  18. Daniel, M.-C. and Astruc, D., Chem. Rev., 2004, vol. 104, no. 1, p. 293.

    Article  CAS  Google Scholar 

  19. Liu, D., Qu, W., Chen, W., Zhang, W., Wang, Z., and Jiang, X., Anal. Chem., 2010, vol. 82, no. 23, p. 9606.

    Article  CAS  Google Scholar 

  20. Chen, L., Li, J., and Chen, L., ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 18, p. 15897.

    Article  CAS  Google Scholar 

  21. Chen, X., Zu, Y., Xie, H., Kemas, A.M., and Gao, Z., Analyst, 2011, vol. 136, no. 8, p. 1690.

    Article  CAS  Google Scholar 

  22. Xu, X., Qiao, J., Qi, L., Wang, L., and Zhang, S., Sci. China Chem., 2015, vol. 58, no. 6, p. 1065.

    Article  CAS  Google Scholar 

  23. Feng, D.-Q., Liu, G., Zheng, W., Liu, J., Chen, T., and Li, D., Chem. Commun., 2011, vol. 47, no. 30, p. 8557.

    Article  CAS  Google Scholar 

  24. Sung, Y.-M. and Wu, S.-P., Sens. Actuators, B, 2014, vol. 197, p. 172.

    Article  CAS  Google Scholar 

  25. He, Y., Liang, Y., and Song, H., Plasmonics, 2016, vol. 11, no. 2, p. 587.

    Article  CAS  Google Scholar 

  26. Lou, T., Chen, Z., Wang, Y., and Chen, L., ACS Appl. Mater. Interfaces, 2011, vol. 3, no. 5, p. 1568.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Farhadi.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Behrooz Azizi, Farhadi, K. & Samadi, N. Lable-Free Gold Nanoparticles in the Presence of Ammonium Pyrrolidine Dithiocarbamate as a Selective and Sensitive Silver Ion Colorimetric Probe. J Anal Chem 75, 1546–1553 (2020). https://doi.org/10.1134/S1061934820120035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820120035

Keywords:

Navigation