Skip to main content
Log in

Two-stage elimination contests with optimal head starts

  • Original Paper
  • Published:
Review of Economic Design Aims and scope Submit manuscript

Abstract

We study two-stage elimination Tullock contests. In the first stage all the players compete against each other; then some advance to the second stage while the others are removed. The finalists compete against each other in the second stage, and one of them wins the prize. To maximize the expected total effort, the designer can give a head start to the winner of the first stage when he competes against the other finalists in the second stage. We show that the optimal head start, independent of the number of finalists, always increases the players’ expected total effort. We also show how the number of players and finalists affect the value of the optimal head start.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. A number of studies provided axiomatic justification for the Tullock contest (see, for example, Skaperdas 1996; Clark and Riis 1998). Baye and Hoppe (2003) have identified conditions under which a variety of rent-seeking contests, innovation tournaments, and patent-race games are strategically equivalent to the Tullock contest.

  2. The incentive for the players who advance from the first stage to the second could also be endogenous since a win in the first stage may give an advantage in the second one.

  3. See also Tsoulouhas et al. (2007) for asymmetric rules in labor tournaments, and Epstein et al. (2011) for asymmetric rules in public procurement and lobbying contests.

  4. Nti (2004) determined the optimal contest success function in the one-stage Tullock contest with two players, while Dasgupta and Nti (1998) did this for n homogeneous players.

  5. It can be shown that it is optimal to award the entire prize sum (which is equal to 1) to the winner in the second stage instead of splitting the entire prize into two prizes, one for the finalist with the highest effort and the other for the second finalist.

  6. Our results are robust for other forms of the head start. If , for example, we assume that player i’s probability to win the first prize is \(\frac{(y_{i})^{\beta }}{(y_{i})^{\beta }+y_{j}}\) , the results will remain robust.

  7. It can be easily verified that the S.O.C. for this maximization problem is satisfied.

  8. It can be easily shown that the S.O.C. is satisfied for this value of the optimal head start.

References

  • Amegashie J (1999) The design of rent-seeking competitions: committees, preliminary and final contests. Public Choice 99:63–76

    Article  Google Scholar 

  • Amegashie J, Cadsby C, Song Y (2007) Competitive burnout: theory and experimental evidence. Games Econ Behav 59:213–239

    Article  Google Scholar 

  • Baye M, Hoppe H (2003) The strategic equivalence of rent-seeking, innovation, and patent-race games. Games Econ Behav 44(2):217–226

    Article  Google Scholar 

  • Clark D, Riis C (1996) A multi-winner nested rent-seeking contest. Public Choice 77:437–443

    Google Scholar 

  • Clark D, Riis C (1998) Contest success functions: an extension. Econ Theory 11:201–204

    Article  Google Scholar 

  • Dasgupta A, Nti KO (1998) Designing an optimal contest. Eur J Polit Econ 14:587–603

    Article  Google Scholar 

  • Denter P, Sisak D (2016) Head starts in dynamic tournaments. Econ Lett 149:94–97

    Article  Google Scholar 

  • Drugov M, Ryvkin D (2017) Biased contests for symmetric players. Games Econ Behav 103:116–144

    Article  Google Scholar 

  • Epstein G, Mealem Y, Nitzan S (2011) Political culture and discrimination in contests. J Public Econ 1–2:88–93

    Article  Google Scholar 

  • Franke J, Kanzow C, Leininger W, Schwartz A (2013) Effort maximization in asymmetric contest games with heterogeneous contestants. Econ Theory 52(2):586–630

    Article  Google Scholar 

  • Fu Q, Lu J (2012) The optimal multi-stage contest. Econ Theory 51(2):351–382

    Article  Google Scholar 

  • Groh C, Moldovanu B, Sela A, Sunde U (2012) Optimal seedings in elimination tournaments. Econ Theory 49:59–80

    Article  Google Scholar 

  • Kirkegaard R (2012) Favoritism in contests: head starts and handicaps. Games Econ Behav 76(1):226–248

    Article  Google Scholar 

  • Konrad K (2002) Investment in the absence of property rights: the role of incumbency advantages. Eur Econ Rev 46(8):563–575

    Article  Google Scholar 

  • Kovenock D, Roberson B (2009) Is the 50-state strategy optimal? J Theor Polit 21(2):213–236

    Article  Google Scholar 

  • Lazear E, Rosen S (1981) Rank-order tournaments as optimum labor contracts. J Polit Econ 89(5):841–864

    Article  Google Scholar 

  • Moldovanu B, Sela A (2006) Contest architecture. J f Econ Theory 126(1):70–97

    Article  Google Scholar 

  • Nti KO (2004) Maximum efforts in contests with asymmetric valuations. Eur J Polit Econ 20:1059–1066

    Article  Google Scholar 

  • Segev E, Sela A (2014) Sequential all-pay auctions with head starts. Soc Choice Welf 43(4):893–923

    Article  Google Scholar 

  • Sheremeta R (2010a) Expenditures and information disclosure in two-stage political contests. J Confl Resolut 54:771–798

    Article  Google Scholar 

  • Sheremeta R (2010b) Experimental comparison of multi-stage and one-stage contests. Games Econ Behav 68:731–747

    Article  Google Scholar 

  • Skaperdas S (1996) Contest success functions. Econ Theory 7:283–290

    Article  Google Scholar 

  • Tsoulouhas T, Knoeber CR, Agrawal A (2007) Contests to become CEO: Incentives, selection and handicaps. Econ Theory 30:195–221

    Article  Google Scholar 

  • Tullock G (1980) Efficient rent-seeking. In: Buchanan JM, Tollison RD, Tullock G (eds) Toward a theory of rent-seeking society. Texas A&M University Press, College Station

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aner Sela.

Appendix

Appendix

1.1 Proof of Proposition 1

The F.O.C. of the maximization problem (5) is

$$\begin{aligned}&\frac{\alpha ^{2}}{(1+\alpha )^{2}}\frac{ {\displaystyle \sum \nolimits _{\begin{array}{c} j=1 \\ j\ne i \end{array}}^{n}} x_{j}}{\left( {\displaystyle \sum \nolimits _{j=1}^{n}} x_{j}\right) ^{2}}-\frac{1}{(1+\alpha )^{2}} {\displaystyle \sum \limits _{\begin{array}{c} k=1 \\ k\ne i \end{array}}^{n}} \frac{x_{k}}{\left( {\displaystyle \sum \nolimits _{j=1}^{n}} x_{j}\right) ^{2}}\frac{x_{i}}{ {\displaystyle \sum \nolimits _{\begin{array}{c} j=1 \\ j\ne k \end{array}}^{n}} x_{j}}\\&\quad \quad +\,\frac{1}{(1+\alpha )^{2}} {\displaystyle \sum \limits _{\begin{array}{c} k=1 \\ j\ne i \end{array}}^{n}} \frac{x_{k}}{ {\displaystyle \sum \nolimits _{j=1}^{n}} x_{j}}\frac{ {\displaystyle \sum \nolimits _{\begin{array}{c} j=1 \\ j\ne k,i \end{array}}^{n}} x_{j}}{\left( {\displaystyle \sum \nolimits _{\begin{array}{c} j=1 \\ j\ne k \end{array}}^{n}} x_{j}\right) ^{2}}\\&\quad =1 \end{aligned}$$

By symmetry, we obtain

$$\begin{aligned} \frac{\alpha ^{2}}{(1+\alpha )^{2}}\frac{n-1}{n^{2}x}+\frac{1}{(1+\alpha )^{2} }\frac{n^{2}-3n+1}{n^{2}(n-1)x}=1 \end{aligned}$$

Thus, the subgame perfect equilibrium strategy in the first stage is

$$\begin{aligned} x=\frac{\alpha ^{2}(n^{2}-2n+1)+(n^{2}-3n+1)}{(1+\alpha )^{2}n^{2}(n-1)}. \end{aligned}$$

1.2 Proof of Proposition 3

By symmetry, the F.O.C. of the maximization problem (12) yields

$$\begin{aligned}&\frac{(\alpha (k-1)-k+2))^{2}}{(\alpha (k-1)+1)^{2}}\frac{n-1}{n^{2}x} +\frac{1}{(\alpha (k-1)+1)^{2}} {\displaystyle \sum \limits _{s=2}^{k}}\\&\quad \quad \times \left[ x^{s-1}\frac{(n-1)!}{(n-s)!}\frac{(n-s+1)!}{n!x^{s-1}}\frac{n-s}{(n-s+1)^{2}x}\right] \\&\quad \quad -\frac{1}{(\alpha (k-1)+1)^{2}} {\displaystyle \sum \limits _{s=2}^{k}} \left[ x^{s-1}\frac{(n-1)!}{(n-s)!} {\displaystyle \sum \limits _{i=2}^{s}} \frac{1}{(n-i+2)x}\frac{(n-s+1)!}{n!x^{s-1}}\frac{1}{(n-s+1)}\right] \\&\quad =\frac{(\alpha (k-1)-k+2))^{2}}{(\alpha (k-1)+1)^{2}}\frac{n-1}{n^{2}x} +\frac{1}{(\alpha (k-1)+1)^{2}} {\displaystyle \sum \limits _{s=2}^{k}}\\&\quad \quad \times \left( \frac{n-s}{n(n-s+1)x}- {\displaystyle \sum \limits _{i=2}^{s}} \frac{1}{n(n-i+2)x}\right) =1 \end{aligned}$$

Thus, the subgame perfect equilibrium strategy in the first stage is

$$\begin{aligned} x= & {} \frac{(\alpha (k-1)-k+2))^{2}}{(\alpha (k-1)+1)^{2}}\frac{n-1}{n^{2}}+\frac{1}{(\alpha (k-1)+1)^{2}} {\displaystyle \sum \limits _{s=2}^{k}} \\&\times \left( \frac{n-s}{n(n-s+1)}- {\displaystyle \sum \limits _{i=2}^{s}} \frac{1}{n(n-i+2)}\right) . \end{aligned}$$

1.3 Proof of Proposition 4

The F.O.C. of the maximization of the total effort given by (13) is

$$\begin{aligned} \frac{dTE}{d\alpha }&= \frac{-2(k-1)}{\left( k\alpha ^{*}-\alpha ^{*}+1\right) ^{3}}\left( \frac{(k-1)(n-1)(k-2-\alpha ^{*}(1-k))}{n}\right. \\&\quad +\,\left. \left( {\displaystyle \sum \limits _{s=2}^{k}} \left( \frac{n-s}{(n-s+1)}- {\displaystyle \sum \limits _{i=2}^{s}} \frac{1}{(n-i+2)}\right) \right) +(\alpha ^{*}-1)(k-1)^{2}\right) =0 \end{aligned}$$

By some calculations we have

$$\begin{aligned} \alpha ^{*}&=\frac{-n}{(k-1)^{2}}\left( {\displaystyle \sum \limits _{s=2}^{k}} \left( \frac{n-s}{(n-s+1)}- {\displaystyle \sum \limits _{i=2}^{s}} \frac{1}{(n-i+2)}\right) \right) +\frac{n+k-2}{(k-1)}\\&=\frac{-n}{(k-1)^{2}}\left( (k-1)+ {\displaystyle \sum \limits _{s=2}^{k}} \left( \frac{-1}{(n-s+1)}- {\displaystyle \sum \limits _{i=2}^{s}} \frac{1}{(n-i+2)}\right) \right) +\frac{n+k-2}{(k-1)}\\&=\frac{n}{(k-1)^{2}}\left( {\displaystyle \sum \limits _{s=3}^{k+1}} \left( \frac{1}{(n-s+2)}+ {\displaystyle \sum \limits _{i=2}^{s}} \frac{1}{(n-i+2)}\right) \right) +\frac{k-2}{k-1}\\&=\frac{1}{(k-1)^{2}}\left( -k+n {\displaystyle \sum \limits _{s=2}^{k+1}} {\displaystyle \sum \limits _{i=2}^{s}} \frac{1}{(n-i+2)}\right) +1\\&=\frac{1}{(k-1)^{2}}\left( -k+n {\displaystyle \sum \limits _{i=2}^{k+1}} \frac{k-i+2}{(n-i+2)}\right) +1\\&=\frac{1}{(k-1)^{2}} {\displaystyle \sum \limits _{i=2}^{k+1}} \left( n\frac{k-i+2}{n-i+2}-1\right) +1 \end{aligned}$$

When \(\alpha \) approaches one we obtain that

$$\begin{aligned} \lim _{\alpha \rightarrow 1}\frac{dTE}{d\alpha }=2\frac{k-1}{k^{3}}\left( \frac{(k-1)(n-1)}{n}- {\displaystyle \sum \limits _{s=2}^{k}} \left( \frac{n-s}{(n-s+1)}- {\displaystyle \sum \limits _{i=2}^{s}} \frac{1}{(n-i+2)}\right) \right) \end{aligned}$$

Since

$$\begin{aligned} {\displaystyle \sum \limits _{s=2}^{k}} \frac{n-s}{(n-s+1)}\le (k-1)\frac{n-2}{n-1} \end{aligned}$$

We obtain,

$$\begin{aligned} \lim _{\alpha \rightarrow 1}\frac{dTE}{d\alpha }\ge 2\frac{(k-1)^{2}}{k^{3}} \left( \frac{n-1}{n}-\frac{n-2}{n-1}\right) >0 \end{aligned}$$

Therefore, the head start \(\alpha >1\), independent of the number of the finalists k, increases the players’ total effort.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cohen, N., Maor, G. & Sela, A. Two-stage elimination contests with optimal head starts. Rev Econ Design 22, 177–192 (2018). https://doi.org/10.1007/s10058-018-0216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10058-018-0216-1

Keywords

JEL Classification

Navigation