Skip to main content

Advertisement

Log in

Web-Based Virtual Lab for Learning Design, Operation, Control, and Optimization of an Anaerobic Digestion Process

  • Published:
Journal of Science Education and Technology Aims and scope Submit manuscript

Abstract

Virtual labs have proven to be very versatile and valuable for providing realistic experience for students in STE (Science, Technology, and Engineering) fields. As we progress from delivery of instructional material from classroom to the Internet, there is need to develop laboratory exercises to supplement the theoretical lessons. A Web-based virtual simulation model of an anaerobic digester (AD) using a flexible Javascript-based platform was developed to support courses in process control and process design. The objective was to provide a virtual laboratory experience that could be used on any device capable of accessing the Web (laptops, tablets, or smartphones) to explore multiple facets (design, operation, control, and optimization) associated with a complex biochemical system. A user-friendly interface that allows easy specification and testing of operational parameters is provided. In this article, we discuss how the model and simulation is developed and deployed along with illustrative examples of its use in a training or educational environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alkhaldi, T., Pranata, I., & Athauda, R. I. (2016). A review of contemporary virtual and remote laboratory implementations: Observations and findings. Journal of Computers in Education, 3(3), 329–351.

    Article  Google Scholar 

  • Åström, K. J., & Hägglund, T. (2006). Advanced PID Control. North Carolina: ISA - The Instrumentation, Systems and Automation Society.

  • Bequette, B. W. (2019). Process control practice and education: Past, present and future. Computers & Chemical Engineering, 128, 538–556.

    Article  Google Scholar 

  • Brosilow, C., & Joseph, B. (2002). Techniques of model-based control. Upper Saddle River, N.J: Prentice Hall PTR.

    Google Scholar 

  • Chiu, S. L., & Lo, I. M. (2016). Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environmental Science and Pollution Research, 23(24), 24435–24450.

    Article  Google Scholar 

  • ECMA. (2011). ECMAScript language specification. In (Vol. 2020).

  • Galan, D., Heradio, R., de la Torre, L., Dormido, S., & Esquembre, F. (2016). Virtual control labs experimentation: The water tank system. Ifac Papersonline, 49(6), 87–92.

    Article  Google Scholar 

  • González, J. C. J. L. Guzmán, M. Berenquel, S. Dormido. (2012). A new framework to develop Web-based interactive tools for control education. In IFAC (Vol. 45, pp. 183-188): IFAC.

  • Haugen, F., Bakke, R., & Lie, B. (2013). Adapting dynamic mathematical models to a pilot anaerobic digestion reactor. Modeling, Identification and Control, 34, 35–54.

    Article  Google Scholar 

  • Heradio, R., de la Torre, L., & Dormido, S. (2016a). Virtual and remote labs in control education: A survey. Annual Reviews in Control, 42, 1–10.

    Article  Google Scholar 

  • Heradio, R., de la Torre, L., Galan, D., Cabrerizo, F. J., Herrera-Viedma, E., & Dormido, S. (2016b). Virtual and remote labs in education: A bibliometric analysis. Computers & Education, 98, 14–38.

    Article  Google Scholar 

  • Hernandez-de-Menendez, M., Guevara, A. V., & Morales-Menendez, R. (2019). Virtual reality laboratories: A review of experiences. International Journal of Interactive Design and Manufacturing - Ijidem, 13(3), 947–966.

    Article  Google Scholar 

  • Hill, D. T., & Barth, C. L. (1977). Dynamic-model for simulation of animal waste digestion. Journal Water Pollution Control Federation, 49, 2129–2143.

    Google Scholar 

  • Holm-Nielsen, J. B., Al Seadi, T., & Oleskowicz-Popiel, P. (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technology, 100(22), 5478–5484.

    Article  Google Scholar 

  • Hoornweg, D., & Bhada-Tata, P. (2012). What a waste: A global review of solid waste management. Urban development series; knowledge papers no. 15. World Bank, Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/17388 License: CC BY 3.0 IGO.

  • Husain, A. (1998). Mathematical models of the kinetics of anaerobic digestion - A selected review. Biomass & Bioenergy, 14(5-6), 561–571.

    Article  Google Scholar 

  • Joseph, B. B., Unlusu, & Sunol, A. (2004). Integrating virtual laboratory exercises into chemical engineering courses. In AIChE annual meeting. Austin, TX: AIChE.

    Google Scholar 

  • Karak, T., Bhagat, R. M., & Bhattacharyya, P. (2012). Municipal solid waste generation, composition, and management: The world scenario. Critical Reviews in Environmental Science and Technology, 42(15), 1509–1630.

    Article  Google Scholar 

  • Kythreotou, N., Florides, G., & Tassou, S. A. (2014). A review of simple to scientific models for anaerobic digestion. Renewable Energy, 71, 701–714.

    Article  Google Scholar 

  • Lamar, J. E., Cronin, C. K., & Scott, L. E. (2004). A review of steps taken to create an international virtual laboratory at NASA Langley for aerodynamic prediction and comparison. Progress in Aerospace Sciences, 40(3), 163–172.

    Article  Google Scholar 

  • Leitman, M. (2016). Peer review report 1 on “Empirical evaluation of a virtual laboratory approach to teach lactate dehydrogenase enzyme kinetics”. Annals of Medicine and Surgery, 5, S147–S147.

    Article  Google Scholar 

  • Lynch, T., & Ghergulescu, I. (2017). Review of virtual labs as the emerging technologies for teaching stem subjects. Inted2017: 11th International Technology, Education and Development Conference, pp. 6082–6091.

  • Martin-Villalba, C., Urquia, A., & Dormido, S. (2012). Development of virtual-labs for education in chemical process control using Modelica. Computers & Chemical Engineering, 39, 170–178.

    Article  Google Scholar 

  • Martin-Villalba, C., Urquia, A., & Dormido, S. (2013). Development of an industrial boiler virtual-lab for control education using Modelica. Computer Applications in Engineering Education, 21(1), 36–45.

    Article  Google Scholar 

  • Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16.

    Article  Google Scholar 

  • Pöschl, M., Ward, S., & Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy, 87(11), 3305–3321.

    Article  Google Scholar 

  • Potkonjak, V., Vukobratovic, M., Jovanovic, K., & Medenica, M. (2010). Virtual mechatronic/robotic laboratory - a step further in distance learning. Computers in Education, 55(2), 465–475.

    Article  Google Scholar 

  • Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrovic, V. M., & Jovanovic, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers in Education, 95, 309–327.

    Article  Google Scholar 

  • Ramachandran, A., Rustum, R., Adeloye, A. J. (2019). Review of anaerobic digestion modeling and optimization using nature-inspired techniques. Processes, 7.

  • Ruiz, A., Jimenez, J. E., Ruz, M. L., Dormido, S., & Visioli, A. (2015). Interactivity-based control education: Some experiences at the University of Cordoba. Ifac Papersonline, 48(29), 37–42.

    Article  Google Scholar 

  • Saenz, J., Esquembre, F., Garcia, F., de la Torre, L., & Dormido, S. (2015). An architecture to use easy Java-Javascript simulations in new devices. IFAC-PapersOnLine, 48(29), 129–133.

    Article  Google Scholar 

  • Shin, J. D., Park, S. W., Lee, S. I., Kim, H., Lee, S. R., & Kim, M. S. (2015). Effects of digestion temperatures and loading amounts on methane production from anaerobic digestion with crop residues. Carbon Letters, 16(4), 265–269.

    Article  Google Scholar 

  • Srinivasagupta, D., & Joseph, B. (2003). An Internet-mediated process control laboratory. IEEE Control Systems Magazine, 23, 11–18.

    Article  Google Scholar 

  • Szavuly, M. I., Toos, A., Barabas, R., & Szilagyi, B. (2019). From modeling to virtual laboratory development of a continuous binary distillation column for engineering education using MATLAB and LabVIEW. Computer Applications in Engineering Education, 27(5), 1019–1029.

    Article  Google Scholar 

  • W3C. (2011). World Wide Web Consoritum. In (Vol. 2020).

  • Xie, S. H., Hai, F. I., Zhan, X. M., Guo, W. S., Ngo, H. H., Price, W. E., & Nghiem, L. D. (2016). Anaerobic co-digestion: A critical review of mathematical modelling for performance optimization. Bioresource Technology, 222, 498–512.

    Article  Google Scholar 

  • Zhu, J. Y., Li, W., & Shen, R. X. (2012). Theoretical models of reaction mechanisms in solid anaerobic digestion: A review. Renewable and Sustainable Energy, Pts, 1-7(347–353), 1247–1250.

    Google Scholar 

Download references

Acknowledgments

Author BJ acknowledges support provided by the University of South Florida that allowed him to spent a semester at UAL working on this and related projects. Author JLG would like to acknowledge Spanish Ministry of Science and Innovation and EU-ERDF by partially funding this work under the project DPI2017 84259-C2-1-R.

Funding

This work is partially funded by the Spanish Ministry of Science and Innovation and EU-ERDF under the project DPI2017 84259-C2-1-R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Guzmán.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement of Informed Consent, Human/Animal Rights

No conflicts, informed consent, human or animal rights applicable.

Declaration of Authors

All the participants are authorship of this work and agree to submit the manuscript for peer review to Journal of Science Education and Technology.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. Mathematical model of the digester

Appendix. Mathematical model of the digester

The model of the digester is based on mass and energy balances combined with kinetic rate models (Haugen et al. 2013). Refer to Tables 1 and 2 for notation, units and nominal values. The mode is based on the following 6 differential equations and 4 algebraic equations:

$$ \mathrm{Mass}\ \mathrm{balance}\ \mathrm{on}\ \mathrm{volatile}\ \mathrm{solids}:{\dot{S}}_{bvs}={S}_{bvs in}\ast \frac{F_{in}}{V}-{S}_{bvs}\ast \frac{F_{out}}{V}-\mu {k}_1{X}_{acid} $$
(1)
$$ \mathrm{Mass}\ \mathrm{balance}\ \mathrm{on}\ \mathrm{fatty}\ \mathrm{acids}:\kern0.5em {\dot{S}}_{vfa}={S}_{vfa in}\ast \frac{F_{in}}{V}-{S}_{vfa}\ast \frac{F_{out}}{V}+\mu {k}_2{X}_{acid}-{\mu}_c{k}_3{X}_{meth} $$
(2)
$$ \mathrm{Mass}\ \mathrm{balance}\ \mathrm{on}\ \mathrm{acidogenesis}\ \mathrm{microbes}:\kern0.75em {\dot{X}}_{acid}=\left(\mu -{K}_d-\frac{F_{out}}{bV}\right){X}_{acid}+{X}_{acdin}{F}_{in}/V $$
(3)
$$ \mathrm{Mass}\ \mathrm{balance}\ \mathrm{on}\ \mathrm{methanogenesis}\ \mathrm{microbes}:\kern0.75em {\dot{X}}_{meth}=\left({\mu}_c-{K}_{dc}-\frac{F_{out}}{bV}\right){X}_{meth}+\frac{X_{meth in}{F}_{in}}{V} $$
(4)
$$ \mathrm{Total}\ \mathrm{mass}\ \mathrm{balance}:\kern0.75em \dot{V}\kern1em ={F}_{in}-{F}_{out} $$
(5)
$$ \mathrm{Energy}\ \mathrm{balance}:\kern0.75em {\dot{T}}_{reac}=\left[\right({P}_{heat}+ c\rho {F}_{in}{T}_{feed}- c\rho {F}_{out}{T}_{reac}+G\left({T}_{room}-{T}_{reac}\right)\Big]/\left( c\rho V\right) $$
(6)
$$ \mathrm{Acetogenesis}\ \mathrm{kinetics}:\kern0.75em \mu =\frac{\mu_m{S}_{bvs}}{K_s+{S}_{bvs}} $$
(7)
$$ \mathrm{Methanogenesis}\ \mathrm{kinetics}:\kern0.75em {\mu}_c=\frac{\mu_{mc}{S}_{vfa}}{K_{sc}+{S}_{vfa}} $$
(8)
$$ \mathrm{Methane}\ \mathrm{production}\ \mathrm{rate}:\kern0.75em {F}_{meth}=V{\mu}_c{k}_5{X}_{meth} $$
(9)
$$ {\mu}_m={\mu}_{mc}=0.013{T}_{reac}-0.129 $$
(10)
Table 1 Process variables
Table 2 Model parameters used

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán, J.L., Joseph, B. Web-Based Virtual Lab for Learning Design, Operation, Control, and Optimization of an Anaerobic Digestion Process. J Sci Educ Technol 30, 319–330 (2021). https://doi.org/10.1007/s10956-020-09860-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10956-020-09860-6

Keywords

Navigation