Skip to main content
Log in

The regulation of merchant fees in credit card markets

  • Original Article
  • Published:
Journal of Regulatory Economics Aims and scope Submit manuscript

Abstract

This paper provides a theory on how to regulate the level of merchant fees in credit card markets. In particular, we discuss how to regulate the merchant fee in a closed payment system with heterogeneous merchants. We find that tourist test is not a valid approach. Our model suggests that the regulation should be based on costs of networks or banks and market elasticity. Moreover, we provide an alternative understanding on how to regulate the interchange fee in an open payment system. The initial public offerings of Visa and MasterCard do not merely change themselves from not-for-profit associations to for profit companies, but also change the mechanism in determining the fee level and structure borne by end users. These changes in industry urge an updated understanding of the optimality of interchange fees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Open systems have also experienced a structure change due to the Initial Public Offering (IPO) of Visa and MasterCard in 2008 and 2006 respectively. Prior to IPOs, credit card companies were not-for-profit associations of banks, especially issuing banks. The bank members within an association collectively select an IF to maximize the transaction volume within the network. Post IPOs, credit card companies become independent for-profit private entities, and charge two other network service fees to issuing and acquiring banks in addition to IFs.

  2. Credit card companies places such terms in contracts with merchants that forbid them from steering away consumers to use other means of transactions. In case of Visa or MasterCard, the terms are called the No-surcharge rule, which only limit the monetary method to steer away. The terms in AmEx case are called Non-Discrimination Provisions, which are even stronger clause than the NSR and limit both monetary and non-monetary methods to steer away consumers to use other means of transactions.

  3. The case is mainly on AmEx’s Non-Discrimination Provisions (NDPs) which allows the companies to inflate the price of goods by charging excessive merchant fees. NDPs basically forbids merchants from encourage customers to use any other payment means by monetary and non-monetary methods. Although AmEx won the lawsuit and retains the NDPs, it does not necessarily imply the merchant fee is immune from regulatory inspection. The AmEx’ merchant fees should receive equivalent attention as for Visa and MasterCard IFs.

  4. It is easy to verify that when there is no MI among merchants, usage externality does not exist.

  5. In what follows we omit the positive scalar \(\left( 2-c\right) ^{3}\).

  6. When it comes to transaction volume, we omit the positive scalar \(\left( 2-c\right) ^{2}\).

  7. Proposition 1 in Rochet and Tirole (2011) shows that perfectly competitive merchants also perfectly pass through the merchant fees.

References

  • Armstrong, M. (2006). Competition in two-sided markets. The RAND Journal of Economics, 37(3), 668–691.

    Article  Google Scholar 

  • Aurazo, J., & Vasquez, J. (2019). Merchant’s card acceptance: An extension of the tourist test for developing countries. Technical report, Graduate Institute of International and Development Studies Working Paper.

  • Baxter, W. F. (1983). Bank interchange of transactional paper: Legal and economic perspectives. The Journal of Law & Economics, 26(3), 541–588.

    Article  Google Scholar 

  • Bourguignon, H., Gomes, R., & Tirole, J. (2019). Shrouded transaction costs: Must-take cards, discounts and surcharges. International Journal of Industrial Organization, 63, 99–144.

    Article  Google Scholar 

  • Bourreau, M., & Verdier, M. (2019). Interchange fees and innovation in payment systems. Review of Industrial Organization, 54(1), 129–158.

    Article  Google Scholar 

  • Carlton, D. W., & Winter, R. A. (2018). Vertical most-favored-nation restraints and credit card no-surcharge rules. The Journal of Law and Economics, 61(2), 215–251.

    Article  Google Scholar 

  • Evans, D. S., & Schmalensee, R. L. (2005). Paying with plastic: The digital revolution in buying and borrowing (2nd ed.). Cambridge, MA: MIT Press.

    Google Scholar 

  • Gans, J., & King, S. P. (2003). The neutrality of interchange fees in payment systems. Topics in Economic Analysis and Policy, 3(1), 1–16.

    Article  Google Scholar 

  • Jonker, N., & Plooij, M. (2013). Tourist test interchange fees for card payments: Down or out. Journal of Financial Market Infrastructures, 1(4), 51–72.

    Article  Google Scholar 

  • Reisinger, M., & Zenger, H. (2019). Interchange fee regulation and service investments. International Journal of Industrial Organization, 40–77.

  • Rochet, J.-C., & Tirole, J. (2002). Cooperation among competitors: some economics of payment card associations. The RAND Journal of Economics, 33(4), 549–570.

    Article  Google Scholar 

  • Rochet, J.-C., & Tirole, J. (2003). Platform competition in two-sided markets. Journal of the European Economic Association, 1(4), 990–1029.

    Article  Google Scholar 

  • Rochet, J.-C., & Tirole, J. (2011). Must-take cards: Merchant discounts and avoided costs. Journal of the European Economic Association, 9(3), 462–495.

    Article  Google Scholar 

  • Schmalensee, R. (2002). Payment systems and interchange fees. The Journal of Industrial Economics, 50(2), 103–122.

    Article  Google Scholar 

  • Vickers, J. (2005). Public policy and the invisible price: Competition law, regulation and the interchange fee. Competition Law Journal, 4(1), 5.

    Google Scholar 

  • Wright, J. (2003). Optimal card payment systems. European Economic Review, 47(4), 587–612.

    Article  Google Scholar 

  • Wright, J. (2004). The determinants of optimal interchange fees in payment systems. The Journal of Industrial Economics, 52(1), 1–26.

    Article  Google Scholar 

  • Wright, J. (2012). Why payment card fees are biased against retailers. The RAND Journal of Economics, 43(4), 761–780.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongru Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

We would like to thank Jeffrey Church, Julian Wright, Yang Sun, Zhongqi Deng and an anonymous referee for helpful discussion and advises. Hongru Tan gratefully acknowledges the National Social Science Foundation for Young Scholars of China, and funding from Institution of New Economic Development (Chengdu) Fundamental Research Funds for the New Economy (No. H181220). All errors are ours.

Appendix

Appendix

See Table 2.

Table 2 The comparison with literature

1.1 Calculation for Table 1

In what follows, we calibrate the model assuming \(b_{i}\) is drawn from uniform distribution between \(\left[ 0,1\right] \). We also assume \(1\le c\le 2\). \(c\ge 1\) ensures that there is no negative solutions in the results. \(c\le 2\) ensures that total cost is also no greater than the maximum sum of transaction benefits. The user surplus of consumers is \(v_{B}\left( p_{B}\right) =E\left( b_{B}\mid b_{B}\ge p_{B}\right) -p_{B}\). With uniform distribution, it is equal to \(\frac{1-p_{B}}{2}\). All the second order conditions for the following solutions are guaranteed by increasing hazard rates—a property that uniform distributions have. Corner solutions are also omitted. The profit, transaction volume and welfare with uniform distributions are given by

$$\begin{aligned} \pi= & {} \left( p_{B}+p_{S}-c\right) \left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \\ T= & {} \left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \\ W= & {} \frac{1}{2}\left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \left( 2-2c+\overset{\wedge }{b_{B}}+\overset{\wedge }{b_{S}}\right) \end{aligned}$$

Therefore, the optimizing problem are given by

Monopoly (a)

$$\begin{aligned} \underset{p_{B}\,p_{S}}{max}\;\pi= & {} \left( p_{B}+p_{S}-c\right) \left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \\ s.t.\;\;\overset{\wedge }{b_{B}}= & {} p_{B};\;\; \overset{\wedge }{b_{S}}=p_{S}-\frac{1-p_{B}}{2} \end{aligned}$$

Monopoly (b)

$$\begin{aligned} \underset{p_{B}\,p_{S}}{max}\;\pi= & {} \left( p_{B}+p_{S}-c\right) \left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \\ s.t.\;\;\overset{\wedge }{b_{B}}= & {} p_{B};\;\;\overset{\wedge }{b_{S}}=p_{S} \end{aligned}$$

Association (a)

$$\begin{aligned} \underset{p_{B}\,p_{S}}{max}\;T= & {} \left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \\ s.t.\;\;\overset{\wedge }{b_{B}}= & {} p_{B};\;\;\overset{\wedge }{b_{S}}=p_{S}- \frac{1-p_{B}}{2};\;\;p_{B}+p_{S}=c \end{aligned}$$

Association (b)

$$\begin{aligned} \underset{p_{B}\,p_{S}}{max}\;T= & {} \left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \\ s.t.\;\;\overset{\wedge }{b_{B}}= & {} p_{B};\;\;\overset{\wedge }{b_{S}} =p_{S};\;\;p_{B}+p_{S}=c \end{aligned}$$

Regulator (a)

$$\begin{aligned} \underset{p_{B}\,p_{S}}{max}\;W= & {} \frac{1}{2}\left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \left( 2-2c+\overset{\wedge }{b_{B}}+\overset{\wedge }{b_{S}}\right) \\ s.t.\;\;\overset{\wedge }{b_{B}}= & {} p_{B};\;\;\overset{\wedge }{b_{S}} =p_{S}-\frac{1-p_{B}}{2};\;\;p_{B}+p_{S}=c \end{aligned}$$

Regulator (b)

$$\begin{aligned} \underset{p_{B}\,p_{S}}{max}\;W= & {} \frac{1}{2}\left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \left( 2-2c+\overset{\wedge }{b_{B}}+\overset{\wedge }{b_{S}}\right) \\ s.t.\;\;\overset{\wedge }{b_{B}}= & {} p_{B};\;\;\overset{\wedge }{b_{S}} =p_{S};\;\;p_{B}+p_{S}=c \end{aligned}$$

Social planner (a)

$$\begin{aligned} \underset{\overset{\wedge }{b_{B}},\,\overset{\wedge }{b_{S}}}{max}\;W= & {} \frac{1}{2} \left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \left( 2-2c+\overset{\wedge }{b_{B}}+\overset{\wedge }{b_{S}}\right) \\ where\,\,p_{B}= & {} \overset{\wedge }{b_{B}};\;\;p_{S}= \overset{\wedge }{b_{S}}+\frac{1-p_{B}}{2} \end{aligned}$$

Social planner (b)

$$\begin{aligned} \underset{\overset{\wedge }{b_{B}},\,\overset{\wedge }{b_{S}}}{max}\;W= \frac{1}{2}\left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \left( 2-2c+\overset{\wedge }{b_{B}}+\overset{\wedge }{b_{S}}\right) \end{aligned}$$

Solving all the problems yields results in Table 1.

1.2 Model for policy implication

1.2.1 Uniform distribution

The monopoly (b) solves

$$\begin{aligned} \underset{p_{B}\,p_{S}}{max}\;\pi= & {} \left( p_{B}+p_{S}-c\right) \left( 1-\overset{\wedge }{b_{B}}\right) \left( 1-\overset{\wedge }{b_{S}}\right) \\ s.t.\;\;\overset{\wedge }{b_{B}}= & {} p_{B};\;\;\overset{\wedge }{b_{S}} =p_{S}-\frac{1-p_{B}}{2};\;p_{B}+p_{S}=k \end{aligned}$$

Or

$$\begin{aligned} \underset{p_{B}}{max}\;\pi= & {} \frac{1}{2}\left( k-c\right) \left( 1-p_{B}\right) \left( 3-2k+p_{B}\right) \end{aligned}$$

Solving the problem yields \(p_{B}=k-1, p_{S}=1, \overset{\wedge }{b_{B}}=k-1, \overset{\wedge }{b_{S}}=\frac{k}{2}, \pi =\frac{1}{2}\left( k-c\right) \left( 2-k\right) ^{2}, T=\left( 2-k\right) ^{2}\) and the welfare is

$$\begin{aligned} W=\frac{1}{4}\left( 2-k\right) ^{2}\left( 1-2c+\frac{3}{2}k\right) \end{aligned}$$

Solving\(\frac{dW}{dk}=0\) yields \(k=\frac{2+8c}{9}\) and \(W\mid _{k=\frac{2+8c}{9}}=\frac{32}{243}\left( 2-c\right) ^{3}.\)

1.2.2 Generalized Pareto distribution

Generally, the GPD is given by

$$\begin{aligned} c.d.f.\;\;F\left( b\right)= & {} 1-\left( 1-\frac{e\left( b-\mu \right) }{\delta }\right) ^{\frac{1}{e}}\\ p.d.f.\;\;f\left( b\right)= & {} \frac{1}{e}\left( -\frac{e}{\delta }\right) \left( 1-\frac{e\left( b-\mu \right) }{\delta }\right) ^{\frac{1}{e}-1} \end{aligned}$$

where \(e>0, \mu<b<\frac{\delta }{e}\). The quasi-demand is given by

$$\begin{aligned} D\left( b\right) =1-F\left( b\right) =\left( 1-\frac{e\left( b-\mu \right) }{\delta }\right) ^{\frac{1}{e}} \end{aligned}$$

To calculate the average net consumer surplus, we have

$$\begin{aligned} v\left( \overset{\wedge }{b}\right) =E\left( b\mid b \ge \overset{\wedge }{b}\right) -\overset{\wedge }{b}=\frac{\int _{\overset{\wedge }{b}}^{\bar{b}}bdF\left( b\right) }{\int _{\overset{\wedge }{b}}^{\bar{b}}dF\left( b\right) }-\overset{\wedge }{b}=\frac{\int _{\overset{\wedge }{b}}^{\bar{b}}D\left( b\right) db}{D\left( \overset{\wedge }{b}\right) } \end{aligned}$$

Plugging into the GPD functions, we have

$$\begin{aligned} v\left( \overset{\wedge }{b}\right) =\frac{\int _{\overset{\wedge }{b}}^{\bar{b}}D \left( b\right) db}{D\left( \overset{\wedge }{b}\right) }= \frac{\int _{\overset{\wedge }{b}}^{\bar{b}} \left( 1-\frac{e\left( b-\mu \right) }{\delta }\right) ^{\frac{1}{e}}db}{D\left( \overset{\wedge }{b}\right) }= \frac{\delta -e\left( \overset{\wedge }{b}-\mu \right) }{1+e} \end{aligned}$$

For simplicity, let \(\mu =0, \frac{\delta }{e}=1\). We have

$$\begin{aligned} c.d.f.\;\;F\left( b\right)= & {} 1-\left( 1-b\right) ^{\frac{1}{e}}\\ p.d.f.\;\;f\left( b\right)= & {} \frac{1}{e}\left( 1-b\right) ^{\frac{1}{e}-1}\\ D\left( \overset{\wedge }{b}\right)= & {} 1-\left( 1-\overset{\wedge }{b}\right) ^{\frac{1}{e}}\\ v\left( \overset{\wedge }{b}\right)= & {} \frac{e\left( 1-\overset{\wedge }{b}\right) }{1+e} \end{aligned}$$

Therefore, the regulation problem becomes

$$\begin{aligned} \underset{p_{B}\,p_{S}}{max}\;\pi= & {} \left( p_{B}+p_{S}-c\right) \left( 1-\overset{\wedge }{b_{B}}\right) ^{\frac{1}{e}} \left( 1-\overset{\wedge }{b_{S}}\right) ^{\frac{1}{e}}\\ s.t.\;\;\overset{\wedge }{b_{B}}= & {} p_{B};\;\;\overset{\wedge }{b_{S}}=p_{S}- \frac{e\left( 1-p_{B}\right) }{1+e};\;p_{B}+p_{S}=k \end{aligned}$$

Or

$$\begin{aligned} \underset{p_{B}}{max}\;\pi =\frac{1}{2}\left( k-c\right) \left( 1-\left( k-p_{S}\right) \right) ^{\frac{1}{e}} \left( 1-p_{S}+\frac{e}{1+e}\left( 1-\left( k-p_{S}\right) \right) \right) ^{\frac{1}{e}} \end{aligned}$$

Solving the problem yields \(p_{B}=\frac{k-2e+ek}{2}, p_{S}=\frac{2e+k-ek}{2}, \overset{\wedge }{b_{B}}=\frac{k-2e+ek}{2}, \overset{\wedge }{b_{S}}=\frac{k}{2}\) and the welfare is

$$\begin{aligned} W= & {} \int _{\overset{\wedge }{b_{B}}}^{1}\int _{\overset{\wedge }{b_{S}}}^{1} \frac{1}{e^{2}}\left( 1-b_{B}\right) ^{\frac{1}{e}-1} \left( 1-b_{S}\right) ^{\frac{1}{e}-1}\left( b_{B}+b_{S}-c\right) db_{S}db_{B}\\ W= & {} \frac{1}{1+e}\left( 1-\overset{\wedge }{b_{B}}\right) ^{\frac{1}{e}} \left( 1-\overset{\wedge }{b_{S}}\right) ^{\frac{1}{e}} \left( 2e-c\left( 1+e\right) +\overset{\wedge }{b_{B}}+\overset{\wedge }{b_{S}}\right) \end{aligned}$$

Plugging into \(\overset{\wedge }{b_{B}}=\frac{k-2e+ek}{2}, \overset{\wedge }{b_{S}}=\frac{k}{2}\), we have

$$\begin{aligned} W=\frac{2^{\frac{-\left( 2+e\right) }{e}}}{1+e} \left( 1+e\right) ^{\frac{1}{e}}\left( -2+k\right) ^{\frac{1}{e}} \left( 2k-2c\left( 1+e\right) +e\left( 2+k\right) \right) \end{aligned}$$

Solving\(\frac{dW}{dk}=0\) yields \(k=\frac{2\left( 2c+2ce+e^{2}\right) }{\left( 2+e\right) ^{2}}\). By plugging k into \(p_{B}=\frac{k-2e+ek}{2}, p_{S}=\frac{2e+k-ek}{2}\), we finally have the customer fee and merchant fee given as follows:

$$\begin{aligned} p_{B}= & {} \frac{2c\left( 1+e\right) ^{2}-e\left( 4+3e\right) }{\left( 2+e\right) ^{2}}\\ p_{S}= & {} \frac{e\left( 4+5e\right) -2c\left( -1+e^{2}\right) }{\left( 2+e\right) ^{2}} \end{aligned}$$

Notably, all calculation rules out the corner solutions and the Mathematica code is given by the supplement material.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, H. The regulation of merchant fees in credit card markets. J Regul Econ 57, 258–276 (2020). https://doi.org/10.1007/s11149-020-09406-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11149-020-09406-z

Keywords

JEL Classification

Navigation