Skip to main content
Log in

Probabilistic frontier regression model for multinomial ordinal type output data

  • Published:
Journal of Productivity Analysis Aims and scope Submit manuscript

Abstract

This paper proposes a probabilistic frontier regression model for multinomial ordinal type output data. We consider some of the output categories as ‘categories of interest’ and the reduction in probability of an output falling into these categories is attributed to the lack in technical efficiency (TE) of the decision-making unit. A measure for TE is proposed to determine the deviations of individual units from the probabilistic frontier of ‘categories of interest’. Simulation results show that the average estimated TE is close to its true value. An application of the proposed model is provided to the data related to the Indian companies, where the categorical output variable is an indicator of return on equity (ROE). Individual TE is obtained for each of the decision-making units (companies under consideration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aigner DJ, Lovell CAK, Schmidt P (1977) Formulation and estimation of stochastic frontier production function models. J Econ 6:21–37

    Article  Google Scholar 

  • Ananth CV, Kleinbaum DG (1997) Regression models for ordinal responses: a review of methods and applications. Int J Epidemiol 26:1323–1333

    Article  Google Scholar 

  • Badade M, Ramanathan TV (2019) Probabilistic frontier regression models for binary type output data. J Appl Stat 46:2460–2480

    Article  Google Scholar 

  • Battese G, Coelli T (1988) Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data. J Econ 38:387–399

    Article  Google Scholar 

  • Bauer PW (1990) Recent developments in the econometric estimation of frontiers. J Econ 46:39–56

    Article  Google Scholar 

  • Coelli TJ, Rao P, Battese GE (2005) An introduction to efficiency and productivity analysis. Springer, New York

    Google Scholar 

  • Geweke J (1992) Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. In: Bernardo J, Berger J, Dawid AP, Smith AFM (eds.), Bayesian Statistics 4, Oxford University Press, Oxford, pp 169–193

  • Ghadge CA (2012) Contributions to the inference on stochastic frontier models, Unpublished Ph.D. thesis, Savitribai Phule Pune University, Pune

  • Greene W (1990) A gamma-distributed stochastic frontier model. J Econ 46:141–163

    Article  Google Scholar 

  • Greene W, Hensher D (2010) Modeling ordered choices, Cambridge University Press, Cambridge

  • Griffiths W, Zhang X, Zhao X (2014) Estimation and efficiency measurement in stochastic production frontiers with ordinal outcomes. J Prod Anal 42:67–84

    Article  Google Scholar 

  • Jaldell H (2019) Measuring productive performance using binary and ordinal output variables: the case of the Swedish fire and rescue services. Int J Prod Res 57:907–917

    Article  Google Scholar 

  • Kijewska A (2016) Determinants of the return on equity ratio (ROE) on the example of companies from metallurgy and mining sector in Poland. Metalurgija 55:285–288

    Google Scholar 

  • Koopmans TC (1951) An analysis of production as an efficient combination of activities, In: Koopmans TC. Activity analysis of production and allocation, Cowles Commission for Research in Economics, Monograph No. 13, Wiley, New York, p 33–97

  • Kumbhakar SC, Lovell CAK (2003) Stochastic frontier analysis. Cambridge University, London

    Google Scholar 

  • Kumbhakar SC, Tsionas EG (2005) Measuring technical and allocative inefficiency in the translog cost system: a Bayesian approach. J Econ 126:355–384

    Article  Google Scholar 

  • Liu J, Sickles RC, Tsionas EG (2017) Bayesian treatments for panel data stochastic frontier models with time varying heterogeneity. Econometrics 5:1–21

    Article  Google Scholar 

  • Luo R, Wang H (2008) A composite logistic regression approach for ordinal panel data regression. Int J Data Anal Tech Strateg 1:29–43

    Article  Google Scholar 

  • McKinley TJ, Morters M, Wood JLN (2015) Bayesian model choice in cumulative link ordinal regression models. Bayesian Anal 10:1–30

    Article  Google Scholar 

  • Meeusen W, van den Broeck J (1977) Efficiency estimation from Cobb-Douglas production functions with composed error. Int Econ Rev 18:435–444

    Article  Google Scholar 

  • Miller RB (1980) Bayesian analysis of the two-parameter gamma distribution. Technometrics 22:65–69

    Article  Google Scholar 

  • Parmeter CF, Kumbhakar SC (2014) Efficiency analysis: a primer on recent advances. Found Trends® Econom 7:191–385

    Article  Google Scholar 

  • Sriram M (2018) Determinants of ROE of S&P BSE Sensex companies: a panel data analysis. Indian J Finance 12:56–65

    Article  Google Scholar 

  • Stevenson R (1980) Likelihood functions for generalized stochastic frontier estimation. J Econom 13:58–66

    Article  Google Scholar 

  • Tsionas EG (2007) Efficiency measurement with the Weibull stochastic frontier. Oxford Bull Econ and Stat 69:693–706

    Article  Google Scholar 

  • Wang X, Kockelman KM (2009) Application of the dynamic spatial ordered probit Model: patterns of ozone concentration in Austin, Texas, manuscript, Department of Civil Engineering, University of Texas, Austin

Download references

Acknowledgements

The authors are thankful to the two referees and the Associate Editor for their comments and suggestions which has helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meena Badade or T. V. Ramanathan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Appendix A: Conditional posterior densities for gamma distribution for J = 3 with 2, 3 being ‘categories of interest’ and 1 as non-interest category

When u follows gamma distribution, the simplified form of posterior distribution becomes

$$\begin{array}{ll}p({\boldsymbol{\beta }},{\boldsymbol{\alpha }},a,b,{\boldsymbol{u}}| {\boldsymbol{y}},{\boldsymbol{X}})\\ &=\mathop{\prod }\nolimits_{i = 1}^{I}\mathop{\prod }\nolimits_{t = 1}^{T}\left\{K{\left(1-{e}^{-{u}_{i}}\left(1-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)\right)}^{{n}_{i1t}}\right.{\left(\frac{{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}-{u}_{i}}}{1+{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}-{u}_{i}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)}^{{n}_{i2t}}\\ &\,\,\left.\times {\left(\left(1-\frac{{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}{1+{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right){e}^{-{u}_{i}}\right)}^{{n}_{i3t}}\right\}\frac{1}{{b}^{a(I+{c}_{1})}\,\Gamma {(a)}^{I+{c}_{2}}}{\left({c}_{3}\mathop{\prod }\nolimits_{i = 1}^{I}{u}_{i}\right)}^{a-1}{e}^{-\frac{1}{b}({\sum \nolimits_{i = 1}^{I}}{u}_{i}+{c}_{4})}\\ &\,\,\times \mathop{\prod }\nolimits_{k = 1}^{p}\frac{1}{\sqrt{2\pi }{\sigma }_{k}}{e}^{-\frac{1}{2}{\left(\frac{{\beta }_{k}-{\mu }_{k}}{{\sigma }_{k}}\right)}^{2}}\frac{1}{\sqrt{2\pi }{\sigma }_{\alpha }}{e}^{-\frac{1}{2}{\left(\frac{{\alpha }_{1}-{\mu }_{\alpha }}{{\sigma }_{\alpha }}\right)}^{2}}\frac{1}{\sqrt{2\pi }{\sigma }_{\alpha }[1-\Phi (\frac{{\alpha }_{1}-{\mu }_{\alpha }}{{\sigma }_{\alpha }})]}{e}^{-\frac{1}{2}{\left(\frac{{\alpha }_{2}-{\mu }_{\alpha }}{{\sigma }_{\alpha }}\right)}^{2}},\end{array}$$

where K is as given in (8). Thus the conditional distributions become,

$$\begin{array}{ll}p({\beta }_{k}| {\boldsymbol{\alpha }},a,b,{\boldsymbol{u}},{\boldsymbol{y}},{\boldsymbol{X}})\propto \mathop{\prod }\nolimits_{i = 1}^{I}\mathop{\prod }\nolimits_{t = 1}^{T}\left\{K{\left(1-{e}^{-{u}_{i}}\left(1-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)\right)}^{{n}_{i1t}}\right.\\ &\,\,\times \left.{\left(\frac{{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}-{u}_{i}}}{1+{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}-{u}_{i}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)}^{{n}_{i2t}}{\left(\left(1-\frac{{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}{1+{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right){e}^{-{u}_{i}}\right)}^{{n}_{i3t}}\right\}\\ &\,\,\times \frac{1}{\sqrt{2\pi }{\sigma }_{k}}{e}^{-\frac{1}{2}{\left(\frac{{\beta }_{k}-{\mu }_{k}}{{\sigma }_{k}}\right)}^{2}},\end{array}$$
$$\begin{array}{ll}p({\alpha }_{1}| {\boldsymbol{\beta }},{\alpha }_{2},a,b,{\boldsymbol{u}},{\boldsymbol{y}},{\boldsymbol{X}})\propto \mathop{\prod }\nolimits_{i = 1}^{I}\mathop{\prod }\nolimits_{t = 1}^{T}\left\{K{\left(1-{e}^{-{u}_{i}}\left(1-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)\right)}^{{n}_{i1t}}\right.\\ &\times \left.{\left(\frac{{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}-{u}_{i}}}{1+{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}-{u}_{i}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)}^{{n}_{i2t}}\right\}\frac{1}{\sqrt{2\pi }{\sigma }_{\alpha }}{e}^{-\frac{1}{2}{\left(\frac{{\alpha }_{1}-{\mu }_{\alpha }}{{\sigma }_{\alpha }}\right)}^{2}},\end{array}$$
$$\begin{array}{ll}p({\alpha }_{2}| {\boldsymbol{\beta }},{\alpha }_{1},a,b,{\boldsymbol{u}},{\boldsymbol{y}},{\boldsymbol{X}})\propto \mathop{\prod }\nolimits_{i = 1}^{I}\mathop{\prod }\nolimits_{t = 1}^{T}\left\{K{\left(\frac{{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}-{u}_{i}}}{1+{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}-{u}_{i}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)}^{{n}_{i2t}}\right.\\ &\,\,\times \left.{\left(\left(1-\frac{{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}{1+{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right){e}^{-{u}_{i}}\right)}^{{n}_{i3t}}\right\}\frac{1}{\sqrt{2\pi }{\sigma }_{\alpha }[1-\Phi (\frac{{\alpha }_{1}-{\mu }_{\alpha }}{{\sigma }_{\alpha }})]}{e}^{-\frac{1}{2}{\left(\frac{{\alpha }_{2}-{\mu }_{\alpha }}{{\sigma }_{\alpha }}\right)}^{2}},\end{array}$$
$$p(a| {\boldsymbol{\beta }},{\boldsymbol{\alpha }},b,{\boldsymbol{u}},{\boldsymbol{y}},{\boldsymbol{X}})\propto \frac{1}{{b}^{a(I+{c}_{1})}\,\Gamma {(a)}^{I+{c}_{2}}}{\left({c}_{3}\mathop{\prod }\nolimits_{i = 1}^{I}{u}_{i}\right)}^{a-1},$$
$$p(b| {\boldsymbol{\beta }},{\boldsymbol{\alpha }},a,{\boldsymbol{u}},{\boldsymbol{y}},{\boldsymbol{X}})\propto \frac{1}{{b}^{a(I+{c}_{1})}\,\Gamma {(a)}^{I+{c}_{2}}}{e}^{-\frac{1}{b}({\sum \nolimits_{i = 1}^{I}}{u}_{i}+{c}_{4})},$$

and

$$\begin{array}{ll}p({u}_{i}| {\boldsymbol{\beta }},{\boldsymbol{\alpha }},a,b,{\boldsymbol{y}},{\boldsymbol{X}})\propto \mathop{\prod }\nolimits_{t = 1}^{T}{\left(1-{e}^{-{u}_{i}}\left(1-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)\right)}^{{n}_{i1t}}\\ &\,\,\times {({u}_{i})}^{a-1}\exp \left\{-{u}_{i}\left(\mathop{\sum }\limits_{t=1}^{T}({n}_{i2t}+{n}_{i3t})+\frac{1}{b}\right)\right\}.\end{array}$$

1.2 Appendix B: Conditional posterior densities for half-normal distribution for for J = 3 with C = {2, 3} and 1 as non-interest category

When u follows half-normal distribution, the posterior distribution simplifies to

$$\begin{array}{ll}p({\boldsymbol{\beta }},{\boldsymbol{\alpha }},\theta ,{\boldsymbol{u}}| {\boldsymbol{y}},{\boldsymbol{X}})\\ &=\mathop{\prod }\nolimits_{i = 1}^{I}\mathop{\prod }\nolimits_{t = 1}^{T}\left\{K{\left(1-{e}^{-{u}_{i}}\left(1-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)\right)}^{{n}_{i1t}}\right.{\left(\frac{{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}-{u}_{i}}}{1+{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}-{u}_{i}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)}^{{n}_{i2t}}\\ &\,\,\left.\times {\left(\left(1-\frac{{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}{1+{e}^{{\alpha }_{2}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right){e}^{-{u}_{i}}\right)}^{{n}_{i3t}}\right\}{\left(\frac{2\theta }{\pi }\right)}^{I}{e}^{-\frac{{\theta }^{2}}{\pi }{\sum \nolimits_{i = 1}^{I}}{u}_{i}^{2}}\frac{1}{{b}_{1}^{{a}_{1}}\Gamma ({a}_{1})}{\theta }^{{a}_{1}-1}{e}^{-\theta /{b}_{1}}\\ &\,\,\times \mathop{\prod }\nolimits_{k = 1}^{p}\frac{1}{\sqrt{2\pi }{\sigma }_{k}}{e}^{-\frac{1}{2}{\left(\frac{{\beta }_{k}-{\mu }_{k}}{{\sigma }_{k}}\right)}^{2}}\frac{1}{\sqrt{2\pi }{\sigma }_{\alpha }}{e}^{-\frac{1}{2}{\left(\frac{{\alpha }_{1}-{\mu }_{\alpha }}{{\sigma }_{\alpha }}\right)}^{2}}\frac{1}{\sqrt{2\pi }{\sigma }_{\alpha }[1-\Phi (\frac{{\alpha }_{1}-{\mu }_{\alpha }}{{\sigma }_{\alpha }})]}{e}^{-\frac{1}{2}{\left(\frac{{\alpha }_{2}-{\mu }_{\alpha }}{{\sigma }_{\alpha }}\right)}^{2}},\end{array}$$

the expression for K is as given in (8). The conditional distributions of β and α are the same as given in Appendix A. The conditional distributions of θ and u are given as follows:

$$p(\theta | {\boldsymbol{\beta }},{\boldsymbol{\alpha }},{\boldsymbol{u}},{\boldsymbol{y}},{\boldsymbol{X}})\propto {\left(\frac{2\theta }{\pi }\right)}^{I}{e}^{-\frac{{\theta }^{2}}{\pi }{\sum \nolimits_{i = 1}^{I}}{u}_{i}^{2}}\frac{1}{{b}_{1}^{{a}_{1}}\Gamma ({a}_{1})}{\theta }^{{a}_{1}-1}{e}^{-\theta /{b}_{1}}$$
$$\begin{array}{ll}p({u}_{i}| {\boldsymbol{\beta }},{\boldsymbol{\alpha }},\theta ,{\boldsymbol{y}},{\boldsymbol{X}})\propto \mathop{\prod }\nolimits_{t = 1}^{T}{\left(1-{e}^{-{u}_{i}}\left(1-\frac{{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}{1+{e}^{{\alpha }_{1}-{{\boldsymbol{x}}}_{{\boldsymbol{it}}}^{\prime}{\boldsymbol{\beta }}}}\right)\right)}^{{n}_{i1t}}\\ &\,\,\times \exp \left\{-{u}_{i}\mathop{\sum }\limits_{t=1}^{T}({n}_{i2t}+{n}_{i3t})-\frac{{\theta }^{2}{u}_{i}^{2}}{\pi }\right\}\end{array}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badade, M., Ramanathan, T.V. Probabilistic frontier regression model for multinomial ordinal type output data. J Prod Anal 53, 339–354 (2020). https://doi.org/10.1007/s11123-020-00581-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11123-020-00581-x

Keywords

Navigation