Skip to main content
Log in

Cu/MgO and Ni/MgO composite nanoparticles for fast, high-efficiency adsorption of aqueous lead(II) and chromium(III) ions

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The conditions were found and the patterns of formation of Ni and Cu composites based on MgO, obtained by the precipitation method and by the glycine–citrate–nitrate method. The obtained materials are of interest as sorbents for the purification of aqueous media from toxic impurities, as well as catalysts in organic synthesis, in particular for the production of methanol from carbon dioxide. The phase composition, thermal stability, microstructure of obtained nanocomposites, as well as their sorption properties, were studied. It was found that high sorption capacities of powders of magnesium oxide and MgO-M (where M—Cu, Ni) nanocomposites with respect to lead and chromium ions are up to 2989.0 and 499.9 mg/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Krasae N, Wantala K (2016) Enhanced nitrogen selectivity for nitrate reduction on Cu–nZVI by TiO2 photocatalysts under UV irradiation. Appl Surf Sci 380:309–317. https://doi.org/10.1016/j.apsusc.2015.12.023

    Article  CAS  Google Scholar 

  2. Wang C, Luo H, Zhang Z, Wu Y, Zhang J, Chen S (2014) Removal of As (III) and As (V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. J Hazard Mater 268:124–131. https://doi.org/10.1016/j.jhazmat.2014.01.009

    Article  CAS  Google Scholar 

  3. Zhou Q, Lei M, Li J, Zhao K, Liu Y (2017) Sensitive determination of bisphenol A, 4-nonylphenol and 4-octylphenol by magnetic solid phase extraction with Fe@MgAl-LDH magnetic nanoparticles from environmental water samples. Sep Purif Technol 182:78–86. https://doi.org/10.1016/j.seppur.2017.01.071

    Article  CAS  Google Scholar 

  4. Liu M, Wang Y, Chen L, Zhang Y, Lin Z (2015) Mg(OH)2 supported nanoscale zero valent iron enhancing the removal of Pb(II) from aqueous solution. ACS Appl Mater Interfaces 7(15):7961–7969. https://doi.org/10.1021/am509184e

    Article  CAS  Google Scholar 

  5. Liu W, Ma J, Sun S, Chen K (2016) Gram-grade Cr (VI) adsorption on porous Fe@SiO2 hierarchical microcapsules. J Water Process Eng 12:111–119. https://doi.org/10.1016/j.jwpe.2016.07.003

    Article  Google Scholar 

  6. Weng X, Cai W, Lin S, Chen Z (2017) Degradation mechanism of amoxicillin using clay supported nanoscale zero-valent iron. Appl Clay Sci 147:137–142. https://doi.org/10.1016/j.clay.2017.07.023

    Article  CAS  Google Scholar 

  7. Peng Q, Dai Y, Liu K, Luo X, He D, Tang X, Huang G (2020) A novel carbon nanotube–magnesium oxide composite with excellent recyclability to efficiently activate peroxymonosulfate for Rhodamine B degradation. J Mater Sci 55:11267–11283. https://doi.org/10.1007/s10853-020-04822-0

    Article  CAS  Google Scholar 

  8. Khort A, Romanovski V, Leybo D, Moskovskikh D (2020) CO oxidation and organic dyes degradation over graphene-Cu and graphene-CuNi catalysts obtained by solution combustion synthesis. Sci Rep 10:16104. https://doi.org/10.1038/s41598-020-72872-0

    Article  CAS  Google Scholar 

  9. Huang J, Li X, Wang X, Fang X, Wang H, Xu X (2019) New insights into CO2 methanation mechanisms on Ni/MgO catalysts by DFT calculations: elucidating Ni and MgO roles and support effects. J CO2 Util 33:55–63. https://doi.org/10.1016/j.jcou.2019.04.022

    Article  CAS  Google Scholar 

  10. Charisiou ND, Papageridis KN, Tzounis L, Sebastian V, Hinder SJ, Baker MA, AlKetbi M, Polychronopoulou K, Goula MA (2019) Ni supported on CaO-MgO-Al2O3 as a highly selective and stable catalyst for H2 production via the glycerol steam reforming reaction. Int J Hydrog Energy 44(1):256–273. https://doi.org/10.1016/j.ijhydene.2018.02.165

    Article  CAS  Google Scholar 

  11. Li J, Li J, Zhu Q, Li H (2018) Magnetic field acceleration of CO2 reforming of methane over novel hierarchical Co/MgO catalyst in fluidized bed reactor. Chem Eng J 350:496–506. https://doi.org/10.1016/j.cej.2018.05.034

    Article  CAS  Google Scholar 

  12. Feng X, Feng J, Li W (2018) Insight into MgO promoter with low concentration for the carbon-deposition resistance of Ni-based catalysts in the CO2 reforming of CH4. Chin J Catal 39(1):88–98. https://doi.org/10.1016/S1872-2067(17)62928-0

    Article  CAS  Google Scholar 

  13. Li X, Huang Y, Zhang Q, Luan C, Vinokurov VA, Huang W (2019) Highly stable and anti-coking Ni/MoCeZr/MgAl2O4-MgO complex support catalysts for CO2 reforming of CH4: effect of the calcination temperature. Energy Convers Manag 179:166–177. https://doi.org/10.1016/j.enconman.2018.10.067

    Article  CAS  Google Scholar 

  14. Dasireddy VD, Neja SŠ, Blaž L (2018) Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol. J CO2 Util 28:189–199. https://doi.org/10.1016/j.jcou.2018.09.002

    Article  CAS  Google Scholar 

  15. Ge L, Wang W, Peng Z, Tan F, Wang X, Chen J, Qiao X (2018a) Facile fabrication of Fe@ MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water. Powder Technol 326:393–401. https://doi.org/10.1016/j.powtec.2017.12.003

    Article  CAS  Google Scholar 

  16. Fajardo C, Gil-Díaz M, Costa G, Alonso J, Guerrero AM, Nande M, Lobo MC, Martín M (2015) Residual impact of aged nZVI on heavy metal-polluted soils. Sci Total Environ 535:79–84. https://doi.org/10.1016/j.scitotenv.2015.03.067

    Article  CAS  Google Scholar 

  17. Su C, Puls RW (2004) Nitrate reduction by zerovalent iron: effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate. Environ Sci Technol 38(9):2715–2720. https://doi.org/10.1021/es034650p

    Article  CAS  Google Scholar 

  18. Dargahi A, Golestanifar H, Darvishi P, Karam A (2015) An investigation and comparison of removing heavy metals (lead and chromium) from aqueous solutions using magnesium oxide nanoparticles. Pol J Environ Stud 25:557–562. https://doi.org/10.15244/pjoes/60281

    Article  CAS  Google Scholar 

  19. Tian G, Wang W, Zong L, Wang A (2017) MgO/palygorskite adsorbent derived from natural Mg-rich brine and palygorskite for high-efficient removal of Cd (II) and Zn (II) ions. J Environ Chem Eng 5(1):1027–1036. https://doi.org/10.1016/j.jece.2017.01.028

    Article  CAS  Google Scholar 

  20. Ciesielczyk F, Bartczak P, Jesionowski T (2016) Removal of cadmium (II) and lead (II) ions from model aqueous solutions using sol–gel-derived inorganic oxide adsorbent. Adsorption 22(4–6):445–458. https://doi.org/10.1007/s10450-015-9703-7

    Article  CAS  Google Scholar 

  21. Feng J, Gao M, Zhang Z, Liu S, Zhao X, Ren Y, Lv Y, Fan Z (2018) Fabrication of mesoporous magnesium oxide nanosheets using magnesium powder and their excellent adsorption of Ni (II). J colloid Interface Sci 510:69–76. https://doi.org/10.1016/j.jcis.2017.09.047

    Article  CAS  Google Scholar 

  22. Matsukevich IV, Krutko NP, Ovseenko LV, Polhovskaja OV, Hubitski DV, Vashook VV (2018) Effect of preparation method on physicochemical properties of nanostructured MgO powder. Proc Natl Acad Sci Belarus Chem Ser 54(3):281–288. https://doi.org/10.29235/1561-8331-2018-54-3-281-288

    Article  CAS  Google Scholar 

  23. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9–10):1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  24. Li X, Xiao W, He G, Zheng W, Yu N, Tan M (2012) Pore size and surface area control of MgO nanostructures using a surfactant-templated hydrothermal process: high adsorption capability to azo dyes. Colloids Surf A Physicochem Eng Asp 408:79–86. https://doi.org/10.1016/j.colsurfa.2012.05.034

    Article  CAS  Google Scholar 

  25. Matsukevich IV, Rucheys AN, Krutko NP, Kulbitskaia LV, Kuznetsova TF, Vashook VV (2017) Synthesis and adsorption properties of nanostructured powders Mg(OH)2 and MgO. Proc Nat Acad Sci Belarus Chem Ser 4:38–44

    Google Scholar 

  26. Purwajanti S, Zhou L, Ahmad Nor Y, Zhang J, Zhang H, Huang X, Yu C (2015) Synthesis of magnesium oxide hierarchical microspheres: a dual-functional material for water remediation. ACS Appl Mater Interfaces 7(38):21278–21286. https://doi.org/10.1021/acsami.5b05553

    Article  CAS  Google Scholar 

  27. Vedyagin AA, Mishakov IV, Karnaukhov TM, Krivoshapkina EF, Ilyina EV, Maksimova TA, Cherepanova SV, Krivoshapkin PV (2017) Sol–gel synthesis and characterization of two-component systems based on MgO. J Sol-Gel Sci Technol 82(2):611–619. https://doi.org/10.1007/s10971-017-4321-3

    Article  CAS  Google Scholar 

  28. Xiong C, Wang W, Tan F, Luo F, Chen J, Qiao X (2015) Investigation on the efficiency and mechanism of Cd (II) and Pb (II) removal from aqueous solutions using MgO nanoparticles. J Hazard Mater 299:664–674. https://doi.org/10.1016/j.jhazmat.2015.08.008

    Article  CAS  Google Scholar 

  29. Ngambia A, Ifthikar J, Shahib II, Jawad A, Shahzad A, Zhao M, Wang J, Chen Zh, Chen Z (2019) Adsorptive purification of heavy metal contaminated wastewater with sewage sludge derived carbon-supported Mg (II) composite. Sci Total Environ 691:306–321. https://doi.org/10.1016/j.scitotenv.2019.07.003

    Article  CAS  Google Scholar 

  30. Zhang L, Zhu W, Zhang H, Bi S, Zhang Q (2014) Hydrothermal–thermal conversion synthesis of hierarchical porous MgO microrods as efficient adsorbents for lead (II) and chromium (VI) removal. RSC Adv 4(58):30542–30550. https://doi.org/10.1039/C4RA03971H

    Article  CAS  Google Scholar 

  31. Cao CY, Qu J, Wei F, Liu H, Song WG (2012) Superb adsorption capacity and mechanism of flowerlike magnesium oxide nanostructures for lead and cadmium ions. ACS Appl Mater Interfaces 4(8):4283–4287. https://doi.org/10.1021/am300972z

    Article  CAS  Google Scholar 

  32. Ge L, Wang W, Peng Z, Tan F, Wang X, Chen J, Qiao X (2018b) Facile fabrication of Fe@MgO magnetic nanocomposites for efficient removal of heavy metal ion and dye from water. Powder Technol 326:393–401. https://doi.org/10.1016/j.powtec.2017.12.003

    Article  CAS  Google Scholar 

  33. Xu C, Yu Z, Yuan K, Jin X, Shi S, Wang X, Zhu L, Zhang G, Xu D, Jiang H (2019) Improved preparation of electrospun MgO ceramic fibers with mesoporous structure and the adsorption properties for lead and cadmium. Ceram Int 45(3):3743–3753

    Article  CAS  Google Scholar 

  34. Chai Z, Tian Q, Ye J, Zhang S, Wang G, Qi Y, Che Y, Ning G (2020) Hierarchical magnesium oxide microspheres for removal of heavy ions from water and efficient bacterial inactivation. J Mater Sci 55(10):4408–4419. https://doi.org/10.1007/s10853-019-04312-y

    Article  CAS  Google Scholar 

  35. Mahdavi S, Jalali M, Afkhami A (2013) Heavy metals removal from aqueous solutions using TiO2, MgO, and Al2O3 nanoparticles. Chem Eng Commun 200(3):448–470. https://doi.org/10.1080/00986445.2012.686939

    Article  CAS  Google Scholar 

  36. Chen G, Shi L (2017) Removal of Cd (II) and Pb (II) ions from natural water using a low-cost synthetic mineral: behavior and mechanisms. RSC Adv 7(69):43445–43454. https://doi.org/10.1039/c7ra08018b

    Article  CAS  Google Scholar 

  37. Pietrelli L, Francolini I, Piozzi A, Sighicelli M, Silvestro I, Vocciante M (2020) Chromium (III) removal from wastewater by chitosan flakes. Appl Sci 10(6):1925. https://doi.org/10.3390/app10061925

    Article  CAS  Google Scholar 

  38. Keshavarz M, Foroutan R, Papari F, Bulgariu L, Esmaeili H (2020) Synthesis of CaO/Fe2O3 nanocomposite as an efficient nanoadsorbent for the treatment of wastewater containing Cr (III). Sep Sci Technol. https://doi.org/10.1080/01496395.2020.1778727

  39. Daniel AB, Zahir E, Hussain I, Naz S, Asghar MA (2020) Citric acid modified cellulose: a cost effective adsorbent for the immobilization of Cr (III) ions from the aqueous phase. Energy Sources Part A Recovery Util Environ Eff. https://doi.org/10.1080/15567036.2020.1773963

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the Belarusian Republican Foundation for Basic Research (project No. X18-PA017) and of the Ministry of Science and Higher Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No. K2-2019-007), implemented by a governmental decree dated 16th of March 2013, N 211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iryna Matsukevich.

Ethics declarations

Conflict of interest

Author declare no competing interests.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsukevich, I., Lipai, Y. & Romanovski, V. Cu/MgO and Ni/MgO composite nanoparticles for fast, high-efficiency adsorption of aqueous lead(II) and chromium(III) ions. J Mater Sci 56, 5031–5040 (2021). https://doi.org/10.1007/s10853-020-05593-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05593-4

Navigation