Skip to main content

Advertisement

Log in

One-step preparation of 3D binder-free electrode of porous Co-Mo-S nanostructures grown on Ni foam for supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transition metal chalcogenides have wide studied as active electrode materials for electrochemical storage devices. In this study, we successfully fabricated a binder-free electrode of hierarchical Co-Mo-S nanosheets on nickel foam (CMS/NF) by a facile hydrothermal method under microwave irradiation. The CMS layer, with a thickness of a few nanometers, was decorated on the NF's surface. Taking advantage of the large specific surface area of NF and the high capacitance and porosity of CMS, the prepared electrode is believed to have a rapid electron and ion transport, large electroactive sites, and excellent cycle stability. The specific capacitance of 1080 F g−1 at 1 A g−1 and excellent cycling stability (90.4% retention in specific capacitance after 5000 cycles) were obtained. For further practical applications, an asymmetric supercapacitor was assembled using the CMS/NF as the cathode and the activated carbon as anode material. The prepared device exhibited a high capacitance of 47 F g−1 at 1 A g−1 and a high energy density of 42.6 Wh kg−1 at a power density of 850.3 W kg−1 at a wide operating voltage of 1.6 V. This current method could provide a rapid one-step process for other 3D porous electrodes for high-performance supercapacitors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Staaf LGH, Lundgren P, Enoksson P (2014) Present and future supercapacitor carbon electrode materials for improved energy storage used in intelligent wireless sensor systems. Nano Energy 9:128–141

    Article  CAS  Google Scholar 

  2. Ahmed MA, Tewari S (2018) Capacitive deionization: processes, materials, and state of the technology. J ElectroanalChem 813:178–192

    Article  CAS  Google Scholar 

  3. Wu D, Yu H, Hou C, Du W, Song X, Shi T, Sun X, Wang B (2020) NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor. J Mater Sci 55:14431–14446

    Article  CAS  Google Scholar 

  4. Cherusseri J, Choudhary N, Kumar KS, Jung Y, Thomas J (2019) Recent trends in transition metal dichalcogenide based supercapacitor electrodes. NanoscaleHoriz 4:840–858

    CAS  Google Scholar 

  5. Xu X, Liu Q, Liang L, Gu H, Zhao Y, Xing X, Zhang X, Hu Y (2020) Well-designed nanosheet-constructed porous CoMoS4 arrays for ultrahigh-performance supercapacitors. Ceram Inter 46:4878–4888

    Article  CAS  Google Scholar 

  6. Feng D, Pan X, Xia Q, Qin J, Zhang Y, Chen X (2020) Metallic MoS2nanosphere electrode for aqueous symmetric supercapacitors with high energy and power densities. J Mater Sci 55:713–723. https://doi.org/10.1007/s10853-019-03997-5

    Article  CAS  Google Scholar 

  7. Bello A, Fashedemi OO, Momodu DY, Barzegar F, Masikhwa TM, Madito MJ, Taghizadeh F, Dangbegnon JK, Manyala N (2015) Electrochemical studies of microwave synthesised bimetallic sulfides nanostructures as faradaic electrodes. ElectrochimActa 174:778–786

    Article  CAS  Google Scholar 

  8. Zhang Y, Sun W, Rui X, Li B, Tan HT, Guo G, Madhavi S, Zong Y, Yan Q (2015) One-pot synthesis of tunable crystalline Ni3S4@amorphous MoS2 core/shell nanospheres for high-performance supercapacitors. Small 11:3694–3702

    Article  CAS  Google Scholar 

  9. Zhang WJ, Huang KJ (2017) A review of recent progress in molybdenum disulfide-based supercapacitors and batteries. InorgChem Front 4:1602–1620

    CAS  Google Scholar 

  10. Wang T, Chen S, Pang H, Xue H, Yu Y (2017) MoS2-based nanocomposites for electrochemical energy storage. AdvSci 4:1600289–1600315

    Google Scholar 

  11. Bao J, Zeng XF, Huang XJ, Chen RK, Wang XJ, Zhang LL, Chen JF (2019) Three-dimensional MoS2/rGO nanocomposites with homogeneous network structure for supercapacitor electrodes. J Mater Sci 54:14845–14858. https://doi.org/10.1007/s10853-019-03957-z

    Article  CAS  Google Scholar 

  12. Yuan C, Wu HB, Xie Y, Lou XWD (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. AngewChemieInt Ed 53:1488–1504

    CAS  Google Scholar 

  13. Umeshbabu E, Rajeshkhanna G, Rao GR (2014) Urchin and sheaf-like NiCo2O4 nanostructures: synthesis and electrochemical energy storage application. Int J Hydrog Energy 39:15627–15638

    Article  CAS  Google Scholar 

  14. Liu Y, Zhang J, Wang S, Wang K, Chen Z, Xu Q (2014) Facilely constructing 3D porous NiCo2S4nanonetworks for high-performance supercapacitors. New J Chem 38:4045–4048

    Article  CAS  Google Scholar 

  15. Yang X, Sun H, Zan P, Zhao L, Lian J (2016) Growth of vertically aligned Co3S4/CoMo2S4 ultrathin nanosheets on reduced graphene oxide as a high-performance supercapacitor electrode. J Mater Chem A 4:18857–18867

    Article  CAS  Google Scholar 

  16. Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, Wu J, Wu G, Zhang M, Liu B, Yao J, Zhang X (2015) When cubic cobalt sulfide meets layered molybdenum disulfide: a core-shell system toward synergetic electrocatalytic water splitting. Adv Mater 27:4752–4759

    Article  CAS  Google Scholar 

  17. Duay J, Gillette E, Hu J, Lee SB (2013) Controlled electrochemical deposition and transformation of hetero-nanoarchitectured electrodes for energy storage. PhysChemChemPhys 15:7976–7993

    CAS  Google Scholar 

  18. Dai YH, Kong LB, Yan K, Shi M, Zhang T, Luo YC, Kang L (2016) Simple synthesis of CoMoS4 based nanostructure and its application for high-performance supercapacitors. RSC Adv 6:7633–7642

    Article  CAS  Google Scholar 

  19. Che Z, Li Y, Chen K, Wei M (2016) Hierarchical MoS2@RGO nanosheets for high performance sodium storage. J Power Sour 331:50–57

    Article  CAS  Google Scholar 

  20. Nguyen VH, Shim JJ (2015) Three-dimensional nickel foam/graphene/NiCo2O4 as high performance electrodes for supercapacitors. J Power Sour 273:110–117

    Article  CAS  Google Scholar 

  21. Kozlovskiy AL, Kenzhina IE, Zdorovets MV (2020) FeCo- Fe2CoO4/Co3O4nanocomposites: phase transformations as a result of thermal annealing and practical application in catalysis. Ceram Int 46:10262–10269

    Article  CAS  Google Scholar 

  22. Zdorovets MV, Kozlovskiy AL (2019) Investigation of phase transformations and corrosion resistance in Co/CoCo2O4 nanowires and their potential use as a basis for lithium-ion batteries. Sci Rep 9:16646–16658

    Article  CAS  Google Scholar 

  23. Yang J, Xuan H, Yang G, Liang T, Han X, Gao J, Xu Y, Xie Z, Han P, Wang D, Du Y (2018) Formation of a flower-like Co−Mo−S on reduced graphene oxide composite on nickel foam with enhanced electrochemical capacitive properties. ChemElectroChem 5:3748–3756

    Article  CAS  Google Scholar 

  24. Han X, Tao K, Wang D, Han L (2018) Design of a porous cobalt sulfidenanosheet array on Ni foam from zeoliticimidazolate frameworks as an advanced electrode for supercapacitors. Nanoscale 10:2735–2741

    Article  CAS  Google Scholar 

  25. Zhao C, Zhang Y, Qian X (2016) MoS2/RGO/Ni3S2nanocomposite in-situ grown on Ni foam substrate and its high electrochemical performance. ElectrochimActa 198:135–143

    Article  CAS  Google Scholar 

  26. Yao J, Liu B, Ozden S, Wu J, Yang S, Rodrigues MTF, Kalaga K, Dong P, Xiao P, Zhang Y, Vajtai R, Ajayan PM (2015) 3D nanostructured molybdenum diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries. ElectrochimActa 176:103–111

    Article  CAS  Google Scholar 

  27. Carlini L, Fasolato C, Postorino P, Fratoddi I, Venditti I, Testa G, Battocchio C (2017) Comparison between silver and gold nanoparticles stabilized with negatively charged hydrophilic thiols: SR-XPS and SERS as probes for structural differences and similarities. Coll Surf A 532:183–188

    Article  CAS  Google Scholar 

  28. Mcintyre NS, Chan TC, Spevack PA, Brown JR (1989) Supported Co-Mo thin film sulphide catalysts for hydrodesulphurization. 1. Xps studies of the effects of reactant pressure. Stud Surf SciCatal 50:187–210

    Article  Google Scholar 

  29. Mai LQ, Yang F, Zhao YL, Xu X, Xu L, Luo YZ (2011) Hierarchical MnMoO4/CoMoO4heterostructured nanowires with enhanced supercapacitor performance. Nat Commun 381:1–5

    Google Scholar 

  30. Wang J, Chao D, Liu J, Li L, Lai L, Lin J, Shen Z (2014) Ni3S2@MoS2 core/shell nanorod arrays on Ni foam for high-performance electrochemical energy storage. Nano Energy 7:151–160

    Article  CAS  Google Scholar 

  31. Wei M, Wu X, Yao Y, Yu S, Sun R, Wong CP (2019) Toward high micro-supercapacitive performance by constructing graphene-supported NiMoS4 hybrid materials on 3D current collectors. ACS Sustain ChemEng 7:19779–19786

    Article  CAS  Google Scholar 

  32. Xie T, Xu J, Wang J, Ma C, Su L, Dong F, Gong L (2020) In situ preparation of flaky attached CuCo2S4 microspheres for high-performance asymmetric supercapacitors. Ionics 26:3555–3563

    Article  CAS  Google Scholar 

  33. Xu X, Song Y, Xue R, Zhou J, Gao J, Xing F (2016) Amorphous CoMoS4 for a valuable energy storage material candidate. ChemEng J 301:266–275

    CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.99-2018.310.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Van Hoa.

Additional information

Handling Editor: Kevin Jones.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 832 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Hoa, N., Dat, P.A. & Nghia, N.H. One-step preparation of 3D binder-free electrode of porous Co-Mo-S nanostructures grown on Ni foam for supercapacitors. J Mater Sci 56, 5132–5142 (2021). https://doi.org/10.1007/s10853-020-05591-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05591-6

Navigation