Skip to main content
Log in

Modeling and stability analysis of three- and six-phase asymmetrical grid-connected induction generator

  • Original Paper
  • Published:
Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the development of linearized model of asymmetrical six-phase grid-connected induction generator (GCIG) for small-signal stability. The developed linearized model has been used to obtain the eigenvalue to evaluate generator stability with respect to parameter variation of the machine in comparison with its three-phase counterpart. During the analysis, suitability of six-phase induction generator for higher output power has been accessed. Instability tendency during low electrical output power can be avoided through closed loop operation of the machine. Hence, the indirect field-oriented control scheme for asymmetrical six-phase GCIG has been proposed for stable operation with higher reliability. The key analytical results have been demonstrated with its experimental validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Khan BH (2009) Non-conventional energy resources. Tata McGraw Hill, New Delhi

    Google Scholar 

  2. International Renewable Energy Agency (2020) https://irena.org/wind (accessed 5 May 2020)

  3. Bose BK (2002) Modern power electronics and AC drives. Prentice Hall, NJ, Upper Saddle River

    Google Scholar 

  4. Zappalá D, Sarma N, Djurović S, Crabtreea CJ, Mohammad A, Tavnera PJ (2019) Electrical and mechanical diagnostic indicators of wind turbine induction generator rotor faults. Renew Energy 131:14–24

    Article  Google Scholar 

  5. Xiea D, Lua Y, Suna J, Gu C (2017) Small signal stability analysis for different types of PMSGs connected to the grid. Renew. Energy 106:149–164

    Article  Google Scholar 

  6. Singh GK (2002) Multi-phase induction machine drive research survey. Electr Power Syst Res 61:139–147

    Article  Google Scholar 

  7. Chinmaya KA, Singh GK (2018) Performance evaluation of multiphase induction generator in stand-alone and grid connected wind energy conversion system. IET Renew Power Gen 12:823–883. https://doi.org/10.1049/iet-rpg.2017.0791

    Article  Google Scholar 

  8. Singh GK (2011) Modeling and analysis of six-phase synchronous generator for stand-alone renewable energy generation. Energy 36:5621–5631. https://doi.org/10.1016/j.energy.2011.07.005

    Article  Google Scholar 

  9. Singh GK (2008) Modeling and experimental analysis of a self-excited six-phase induction generator for stand-alone renewable energy generation. Renew Energy 33:1605–1621. https://doi.org/10.1016/j.renene.2007.08.007

    Article  Google Scholar 

  10. Kumar AS, Munda JL, Singh GK (2015) Wind-driven stand-alone six-phase self-excited induction generator transients under different loading conditions. Electr Eng 97:87–100. https://doi.org/10.1007/s00202-014-0318-x

    Article  Google Scholar 

  11. Khan MF, Khan MR, Iqbal A (2018) Modeling, implementation and analysis of a high (six) phase self excited induction generator. J Elec Sys Info Tech 5:794–812. https://doi.org/10.1016/j.jesit.2016.12.016

    Article  Google Scholar 

  12. Mohanty AK, Yadav KB (2017) Performance characteristics of six-phase induction generator for Renewable Power Generation. Indo J Elec Eng Comp Sci 5:299–308

    Google Scholar 

  13. Singh GK, Kumar AS, Saini RP (2010a) Selection of capacitance for self-excited six-phase induction generator for stand-alone renewable energy generation. Energy 35:3273–3283. https://doi.org/10.1016/j.energy.2010.04.012

    Article  Google Scholar 

  14. Singh GK, Kumar AS, Saini RP (2011) Performance analysis of a simple shunt and series compensated six-phase self-excited induction generator for stand-alone renewable energy generation. Energy Convers Manage 52:1688–1699. https://doi.org/10.1016/j.enconman.2010.10.032

    Article  Google Scholar 

  15. Singh GK, Kumar AS, Saini RP (2010b) Performance evaluation of series compensated self-excited six-phase induction generator for stand-alone renewable energy generation. Energy 35:288–297. https://doi.org/10.1016/j.energy.2009.09.021

    Article  Google Scholar 

  16. Ojo O, Davidson IE (2000) Pwm-vsi inverter-assisted stand-alone dual stator winding induction generator. IEEE Trans Ind Appl 36:1604–1611. https://doi.org/10.1109/IAS.1999.805950

    Article  Google Scholar 

  17. Wu Z, Ojo O, Sastry J (2007) High-performance control of a dual stator winding dc power induction generator. IEEE Trans Ind Appl 43:582–592. https://doi.org/10.1109/TIA.2006.890020

    Article  Google Scholar 

  18. Li Y, Hu Y, Huang W, Liu L, Zhang Y (2009) The capacity optimization for the static excitation controller of the dual-stator-winding induction generator operating in a wide speed range. IEEE Trans Ind Electron 56:530–541. https://doi.org/10.1109/TIE.2008.2003363

    Article  Google Scholar 

  19. Moradian M, Soltani J (2016) An isolated three-phase induction generator system with dual stator winding sets under unbalanced load condition. IEEE Trans Energy Convers 31:531–539. https://doi.org/10.1109/TEC.2015.2508958

    Article  Google Scholar 

  20. Wu B, Lang Y, Zargari N, Kouro S (2011) Power conversion and control of wind energy systems. Wiley, New Jersey

    Book  Google Scholar 

  21. Levy D (1986) Analysis of a double-stator induction machine used for a variable speed/constant-frequency small-scale hydro/wind electric power generator. Electr Power Syst Res 11:205–223. https://doi.org/10.1016/0378-7796(86)90035-0

    Article  Google Scholar 

  22. Che HS, Levi E, Jones M, Duran MJ, Hew W, Rahim NA (2014) Operation of a six-phase induction machine using series-connected machine-side converters. IEEE Trans Ind Electron 61:164–176. https://doi.org/10.1109/TEC.2015.250895810.1109/TIE.2013.2248338

    Article  Google Scholar 

  23. Rodrigo JAB, Talpone JI, Salamero LM (2017) Variable-speed wind energy conversion system based on a dual stator-winding induction generator. IET Renew Power Gener 11:73–80. https://doi.org/10.1049/iet-rpg.2016.0186

    Article  Google Scholar 

  24. Basic D, Zhu JG, Boardman G (2003) Transient performance study of a brushless doubly fed twin stator induction generator. IEEE Trans Energy Convers 18:400–408. https://doi.org/10.1109/TEC.2003.815836

    Article  Google Scholar 

  25. Abdi E, Mcmahon R, Malliband P, Shao S, Mathekga ME (2013) Performance analysis and testing of a 250 kw medium-speed brushless doubly-fed induction generator. IET Renew Power Gener 7:631–638. https://doi.org/10.1049/iet-rpg.2012.0234

    Article  Google Scholar 

  26. Duran MJ, Salas F, Arahal MR (2008) Bifurcation analysis of five-phase induction motor drives with third harmonic injection. IEEE Trans Ind Electro 55:2006–2014. https://doi.org/10.1109/TIE.2008.918470

    Article  Google Scholar 

  27. Singh GK, Pant V, Singh VP (2003a) Stability analysis of a multi-phase (six-phase) induction machine. Comp Elect Eng 29:727–756. https://doi.org/10.1016/S0045-7906(03)00003-X

    Article  Google Scholar 

  28. Iqbal A, Singh GK, Pant V (2016) Stability analysis of an asymmetrical six-phase synchronous motor. Turk J Elec Eng & Comp Sci 34:1674–1692. https://doi.org/10.3906/elk-1403-46

    Article  Google Scholar 

  29. Iqbal A, Singh GK (2018) Eigenvalue analysis of six-phase synchronous motor for small signal stability. EPE J 28:49–62. https://doi.org/10.1080/09398368.2018.1425241

    Article  Google Scholar 

  30. Singh K, Singh GK (2016) Stability assessment of isolated six-phase induction generator feeding static loads. Turk J Elec Eng Comp Sci 24:4218–4230. https://doi.org/10.3906/elk-1502-166

    Article  Google Scholar 

  31. Klingshirn EA (1983) High Phase Order Induction Motors - Part I-Description and Theoretical Considerations. IEEE Trans Power Appr Syst 3:47–53. https://doi.org/10.1109/MPER.1983.5519568

    Article  Google Scholar 

  32. Singh GK, Pant V, Singh YP (2003b) Voltage source inverter driven multi-phase induction machine. Comp Elect Eng 29:813–834. https://doi.org/10.1016/S0045-7906(03)00036-3

    Article  MATH  Google Scholar 

  33. Krause PC, Wasynczuk O, Sudhoff SD (2002) Analysis of electrical machinery and drive systems, 2nd edn. IEEE Press, Piscataway (NJ)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Iqbal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

During mathematical modeling of induction machine, neutral points of both three-phase stator winding were assumed separate for the prevention of fault propagation. Equations of induction machine are used to develop the equivalent circuit as shown in Fig. 

Fig. 15
figure 15

Equivalent circuit of asymmetrical six-phase induction machine

15.

$$ {\varvec{v}}_{{{\text{qdk}}}} = \left[ {\begin{array}{*{20}c} {v_{{{\text{qk}}}} } & {v_{{{\text{dk}}}} } \\ \end{array} } \right]^{T} $$
$$ {\varvec{v}}_{{{\text{qdr}}}} = \left[ {\begin{array}{*{20}c} {v_{{{\text{qr}}}} } & {v_{{{\text{dr}}}} } \\ \end{array} } \right]^{T} $$
$$ \phi_{{{\text{qdk}}}} = \left[ {\begin{array}{*{20}c} {\phi_{{{\text{qk}}}} } & {\phi_{{{\text{dk}}}} } \\ \end{array} } \right]^{T} $$
$$ \phi_{{{\text{dqk}}}} = \left[ {\begin{array}{*{20}c} {\phi_{{{\text{dk}}}} } & { - \phi_{{{\text{qk}}}} } \\ \end{array} } \right]^{T} $$
$$ \phi_{{{\text{qdr}}}} = \left[ {\begin{array}{*{20}c} {\phi_{{{\text{qr}}}} } & {\phi_{{{\text{dr}}}} } \\ \end{array} } \right]^{T} $$
$$ \phi_{{{\text{dqr}}}} = \left[ {\begin{array}{*{20}c} {\phi_{{{\text{dr}}}} } & { - \phi_{{{\text{qr}}}} } \\ \end{array} } \right]^{T} $$
$$ {\varvec{i}}_{{{\text{qdk}}}} = \left[ {\begin{array}{*{20}c} {i_{{{\text{qk}}}} } & {i_{{{\text{dk}}}} } \\ \end{array} } \right]^{T} $$
$$ {\varvec{i}}_{{{\text{qdr}}}} = \left[ {\begin{array}{*{20}c} {i_{{{\text{qr}}}} } & {i_{{{\text{dr}}}} } \\ \end{array} } \right]^{T} $$
$$ {\varvec{v}} = \left[ {\left( {{\varvec{v}}_{{{\text{qdk}}}} } \right)_{k = 1, 2} {\varvec{v}}_{{{\text{qdr}}}} } \right]^{T} $$
$$ {\varvec{i}} = \left[ {\left( {{\varvec{i}}_{{{\text{qdk}}}} } \right)_{k = 1, 2} {\varvec{i}}_{{{\text{qdr}}}} } \right]^{T} $$

where \({\text{k = }}\left\{ {\begin{array}{*{20}c} {\text{1, for winding set abc}} \\ {\text{2, for winding set xyz}} \\ \end{array} } \right.\)

$$ z = \left| {\begin{array}{*{20}l} {r_{1} + \frac{p}{{\omega_{b} }}\left( {x_{l1} + x_{lm} + x_{m} } \right) } \hfill & {\frac{{\omega_{e} }}{{\omega_{b} }}\left( {x_{l1} + x_{lm} + x_{m} } \right)} \hfill & {\frac{p}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right)} \hfill & { \frac{{\omega_{e} }}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right)} \hfill & {\frac{p}{{\omega_{b} }}x_{m} } \hfill & {\frac{{\omega_{e} }}{{\omega_{b} }}x_{m} } \hfill \\ { - \frac{{\omega_{e} }}{{\omega_{b} }}\left( {x_{l1} + x_{lm} + x_{m} } \right)} \hfill & {r_{1} + \frac{p}{{\omega_{b} }}\left( {x_{l1} + x_{lm} + x_{m} } \right)} \hfill & { - \frac{{\omega_{e} }}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right)} \hfill & {\frac{p}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right)} \hfill & { - \frac{{\omega_{e} }}{{\omega_{b} }}x_{m} } \hfill & {\frac{p}{{\omega_{b} }}x_{m} } \hfill \\ {\frac{p}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right)} \hfill & {\frac{{\omega_{e} }}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right)} \hfill & {r_{2} + \frac{p}{{\omega_{b} }}\left( {x_{l2} + x_{lm} + x_{m} } \right)} \hfill & {\frac{{\omega_{e} }}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right) } \hfill & {\frac{p}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right)} \hfill & {\frac{{\omega_{e} }}{{\omega_{b} }}x_{m} } \hfill \\ { - \frac{{\omega_{e} }}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right)} \hfill & {\frac{p}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right)} \hfill & { - \frac{{\omega_{e} }}{{\omega_{b} }}\left( {x_{lm} + x_{m} } \right)} \hfill & {r_{2} + \frac{p}{{\omega_{b} }}\left( {x_{l2} + x_{lm} + x_{m} } \right)} \hfill & { - \frac{{\omega_{e} }}{{\omega_{b} }}x_{m} } \hfill & { \frac{p}{{\omega_{b} }}x_{m} } \hfill \\ { \frac{p}{{\omega_{b} }}x_{m} } \hfill & { \frac{{s\omega_{e} }}{{\omega_{b} }}x_{m} } \hfill & {\frac{p}{{\omega_{b} }}x_{m} } \hfill & { \frac{{s\omega_{e} }}{{\omega_{b} }}x_{m} } \hfill & { r_{r} + \frac{p}{{\omega_{b} }}\left( {x_{lr} + x_{m} } \right)} \hfill & { \frac{{s\omega_{e} }}{{\omega_{b} }}\left( {x_{lr} + x_{m} } \right)} \hfill \\ { - \frac{{s\omega_{e} }}{{\omega_{b} }}x_{m} } \hfill & { \frac{p}{{\omega_{b} }}x_{m} } \hfill & { - \frac{{s\omega_{e} }}{{\omega_{b} }}x_{m} } \hfill & {\frac{p}{{\omega_{b} }}x_{m} } \hfill & { - \frac{{s\omega_{e} }}{{\omega_{b} }}\left( {x_{lr} + x_{m} } \right) } \hfill & {r_{r} + \frac{p}{{\omega_{b} }}\left( {x_{lr} + x_{m} } \right)} \hfill \\ \end{array} } \right| $$
$$ X = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left( {x_{l1} + x_{lm} + x_{m} } \right)} & 0 & {\left( {x_{lm} + x_{m} } \right)} \\ 0 & {\left( {x_{l1} + x_{lm} + x_{m} } \right)} & 0 \\ {\left( {x_{lm} + x_{m} } \right)} & 0 & {\left( {x_{l2} + x_{lm} + x_{m} } \right)} \\ \end{array} \begin{array}{*{20}c} 0 & {x_{m} } & 0 \\ {\left( {x_{lm} + x_{m} } \right)} & 0 & {x_{m} } \\ 0 & {x_{m} } & 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 & & { \left( {x_{lm} + x_{m} } \right) 0} \\ {x_{m} } & 0 & {x_{m} } \\ 0 & {x_{m} } & 0 \\ \end{array} \begin{array}{*{20}c} {\left( {x_{l2} + x_{lm} + x_{m} } \right)} & 0 & {x_{m} } \\ 0 & {\left( {x_{lr} + x_{m} } \right)} & 0 \\ {x_{m} } & 0 & {\left( {x_{lr} + x_{m} } \right)} \\ \end{array} } \\ \end{array} } \right] $$
$$ u = \left[ {\begin{array}{*{20}c} {\left( {\Delta {\varvec{v}}_{{{\text{qdk}}}} } \right)_{k = 1, 2} } & {\Delta {\varvec{v}}_{{{\text{qdr}}}} } & {\Delta \tau_{l} } \\ \end{array} } \right]^{T} $$
$$ x = \left[ {\begin{array}{*{20}c} {\left( {\Delta i_{{{\text{qdk}}}} } \right)_{k = 1, 2} } & {\Delta i_{{{\text{qdr}}}} } & {{\raise0.7ex\hbox{${\Delta \omega_{r} }$} \!\mathord{\left/ {\vphantom {{\Delta \omega_{r} } {\omega_{b} }}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{${\omega_{b} }$}}} \\ \end{array} } \right]^{T} $$
$$ W_{1p} = \left| {\begin{array}{*{20}l} {\left( {x_{l1} + x_{{{\text{lm}}}} + x_{m} } \right)} \hfill & 0 \hfill & {\left( {x_{{{\text{lm}}}} + x_{m} } \right)} \hfill & { 0} \hfill \\ 0 \hfill & {\left( {x_{l1} + x_{{{\text{lm}}}} + x_{m} } \right)} \hfill & 0 \hfill & {\left( {x_{{{\text{lm}}}} + x_{m} } \right)} \hfill \\ {\left( {x_{{{\text{lm}}}} + x_{m} } \right)} \hfill & 0 \hfill & {\left( {x_{l2} + x_{{{\text{lm}}}} + x_{m} } \right)} \hfill & 0 \hfill \\ 0 \hfill & {\left( {x_{{{\text{lm}}}} + x_{m} } \right)} \hfill & 0 \hfill & {\left( {x_{l2} + x_{{{\text{lm}}}} + x_{m} } \right)} \hfill \\ \end{array} } \right| $$
$$ W_{2p} = \left[ {\begin{array}{*{20}c} {x_{lr} + x_{m} } & 0 \\ 0 & {x_{lr} + x_{m} } \\ \end{array} } \right] $$
$$ X_{1p} = \left[ {\begin{array}{*{20}c} {x_{m} 0} \\ {0 x_{m} } \\ {x_{m} 0} \\ {0 x_{m} } \\ \end{array} } \right] $$
$$ X_{2p} = \left[ {\begin{array}{*{20}c} {x_{m} 0 x_{m} 0 } \\ {0 x_{m} 0 x_{m} } \\ \end{array} } \right] $$
$$ Y_{1p} = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} } \right] $$
$$ Y_{2p} = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \right] $$
$$ S_{p} = \left[ { - 2P\omega_{b}^{2} /J} \right] $$
$$ Q_{1p} = \left[ {0 0 0 0} \right] $$
$$ Q_{2p} = \left[ {0 0} \right] $$
$$ W_{1k} = \left| {\begin{array}{*{20}l} {r_{1} } \hfill & { \left( {x_{l1} + x_{lm} + x_{m} } \right)} \hfill & 0 \hfill & {\left( {x_{{{\text{lm}}}} + x_{m} } \right)} \hfill \\ { - \left( {x_{l1} + x_{{{\text{lm}}}} + x_{m} } \right)} \hfill & { r_{1} } \hfill & { - \left( {x_{{{\text{lm}}}} + x_{m} } \right)} \hfill & 0 \hfill \\ 0 \hfill & {\left( {x_{lm} + x_{m} } \right)} \hfill & {r_{2} } \hfill & {\left( {x_{l2} + x_{{{\text{lm}}}} + x_{m} } \right)} \hfill \\ { - \left( {x_{{{\text{lm}}}} + x_{m} } \right)} \hfill & 0 \hfill & { - \left( {x_{l2} + x_{{{\text{lm}}}} + x_{m} } \right)} \hfill & {r_{2} } \hfill \\ \end{array} } \right| $$
$$ X_{1k} = \left[ {\begin{array}{*{20}c} {0 x_{m} } \\ { - x_{m} 0 } \\ {0 x_{m} } \\ { - x_{m} 0 } \\ \end{array} } \right] $$
$$ X_{2k} = \left[ {\begin{array}{*{20}c} {0 {\text{sx}}_{m} 0 {\text{sx}}_{m} } \\ { - {\text{sx}}_{m} 0 - {\text{sx}}_{m} 0 } \\ \end{array} } \right] $$
$$ Y_{1k} = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} } \right] $$
$$ Y_{2k} = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \right] $$
$$ Q_{1k} = \left[ {x_{m} i_{{{\text{dr}}}} - x_{m} i_{{{\text{qr}}}} x_{m} i_{{{\text{dr}}}} - x_{m} i_{{{\text{qr}}}} } \right] $$
$$ Q_{2k} = \left[ { - x_{m} \left( {i_{d1} + i_{d2} } \right) x_{m} \left( {i_{q1} + i_{q2} } \right) } \right] $$
$$ S_{k} = \left[ 0 \right] $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, A., Singh, G.K. Modeling and stability analysis of three- and six-phase asymmetrical grid-connected induction generator. Electr Eng 103, 1169–1181 (2021). https://doi.org/10.1007/s00202-020-01145-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00202-020-01145-w

Keywords

Navigation