Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

A surgical mouse model of neonatal pressure overload by transverse aortic constriction

Abstract

Cardiac disease is the main cause of death worldwide. Insufficient regeneration of the adult mammalian heart is a major driver of cardiac morbidity and mortality. Cardiac regeneration occurs in early postnatal mice, thus understanding mechanisms of mammalian cardiac regeneration could facilitate the development of novel therapeutic strategies. Here, we provide a detailed description of a neonatal mouse model of pressure overload by transverse aortic constriction (nTAC) that can be applied at postnatal days 1 and 7. We have previously used this model to demonstrate that mice are able to fully adapt to pressure overload following nTAC on postnatal day 1. In contrast, when nTAC is applied in the non-regenerative phase (at postnatal day 7), it is associated with a maladaptive response similar to that seen when transverse aortic constriction (TAC) is applied to adult mice. Once a user is experienced in nTAC surgery, the procedure can be completed in less than 10 min per mouse. We anticipate that this model will facilitate the discovery of therapeutic targets to treat patients or prevent pressure overload-induced cardiac failure in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Surgery setup.
Fig. 2: Schematic and microscopic views of the surgical procedures.
Fig. 3: Doppler flow velocity measurement.
Fig. 4: Echocardiography of 7-day-old mice.
Fig. 5: Representative whole-heart images following nTAC and sham surgeries.
Fig. 6: Pressure overload reduces cardiac function in 7-day-old mice but not 1-day-old mice.

Similar content being viewed by others

Data availability

No new datasets were generated or analyzed during the current study. A data source file containing the data shown in Fig. 6 (all previously published in ref. 17) is provided as Source Data.

References

  1. Hein, S. et al. Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107, 984–991 (2003).

    Article  Google Scholar 

  2. Zhou, P. & Pu, W. T. Recounting cardiac cellular composition. Circ. Res. 118, 368–370 (2016).

    Article  CAS  Google Scholar 

  3. Hesse, M., Welz, A. & Fleischmann, B. K. Heart regeneration and the cardiomyocyte cell cycle. Pflugers Arch. 470, 241–248 (2018).

    Article  CAS  Google Scholar 

  4. Alkass, K. et al. No evidence for cardiomyocyte number expansion in preadolescent mice. Cell 163, 1026–1036 (2015).

    Article  CAS  Google Scholar 

  5. Walsh, S., Ponten, A., Fleischmann, B. K. & Jovinge, S. Cardiomyocyte cell cycle control and growth estimation in vivo—an analysis based on cardiomyocyte nuclei. Cardiovasc. Res. 86, 365–373 (2010).

    Article  CAS  Google Scholar 

  6. Maillet, M., van Berlo, J. H. & Molkentin, J. D. Molecular basis of physiological heart growth: fundamental concepts and new players. Nat. Rev. Mol. Cell Biol. 14, 38–48 (2013).

    Article  CAS  Google Scholar 

  7. Heineke, J. & Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 7, 589–600 (2006).

    Article  CAS  Google Scholar 

  8. Grund, A. & Heineke, J. Exercise makes the difference: deconstructing physiological hypertrophy in swine. J. Mol. Cell Cardiol. 79, 89–91 (2015).

    Article  CAS  Google Scholar 

  9. Shimizu, I. & Minamino, T. Physiological and pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 97, 245–262 (2016).

    Article  CAS  Google Scholar 

  10. Nakamura, M. & Sadoshima, J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat. Rev. Cardiol. 15, 387–407 (2018).

    Article  CAS  Google Scholar 

  11. Porrello, E. R. et al. Transient regenerative potential of the neonatal mouse heart. Science 331, 1078–1080 (2011).

    Article  CAS  Google Scholar 

  12. Malek Mohammadi, M. et al. The transcription factor GATA4 promotes myocardial regeneration in neonatal mice. EMBO Mol. Med. 9, 265–279 (2017).

    Article  CAS  Google Scholar 

  13. Zhu, W. et al. Regenerative potential of neonatal porcine hearts. Circulation 138, 2809–2816 (2018).

    Article  Google Scholar 

  14. Ye, L. et al. Early regenerative capacity in the porcine heart. Circulation 138, 2798–2808 (2018).

    Article  Google Scholar 

  15. Vujic, A. et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat. Commun. 9, 1659 (2018).

    Article  Google Scholar 

  16. Perrino, C. et al. Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J. Clin. Invest. 116, 1547–1560 (2006).

    Article  CAS  Google Scholar 

  17. Malek Mohammadi, M. et al. Induction of cardiomyocyte proliferation and angiogenesis protects neonatal mice from pressure overload-associated maladaptation. JCI Insight https://doi.org/10.1172/jci.insight.128336 (2019).

  18. Rockman, H. A. et al. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl Acad. Sci. USA 88, 8277–8281 (1991).

    Article  CAS  Google Scholar 

  19. Patten, R. D. & Hall-Porter, M. R. Small animal models of heart failure: development of novel therapies, past and present. Circ. Heart Fail. 2, 138–144 (2009).

    Article  Google Scholar 

  20. Heineke, J. Screening for novel calcium-binding proteins that regulate cardiac hypertrophy: CIB1 as an example. Methods Mol. Biol. 963, 279–301 (2013).

    Article  CAS  Google Scholar 

  21. Hartley, C. J. et al. Doppler velocity measurements from large and small arteries of mice. Am. J. Physiol. Heart Circ. Physiol. 301, H269–H278 (2011).

    Article  CAS  Google Scholar 

  22. Tavakoli, R., Nemska, S., Jamshidi, P., Gassmann, M. & Frossard, N. Technique of minimally invasive transverse aortic constriction in mice for induction of left ventricular hypertrophy. J. Vis. Exp. https://doi.org/10.3791/56231 (2017).

  23. Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    Article  CAS  Google Scholar 

  24. Mahmoud, A. I. et al. Nerves regulate cardiomyocyte proliferation and heart regeneration. Dev. Cell 34, 387–399 (2015).

    Article  CAS  Google Scholar 

  25. Karra, R. & Poss, K. D. Redirecting cardiac growth mechanisms for therapeutic regeneration. J. Clin. Invest. 127, 427–436 (2017).

    Article  Google Scholar 

  26. Cui, M., Wang, Z., Bassel-Duby, R. & Olson, E. N. Genetic and epigenetic regulation of cardiomyocytes in development, regeneration and disease. Development https://doi.org/10.1242/dev.171983 (2018).

  27. O’Tierney, P. F. et al. Reduced systolic pressure load decreases cell-cycle activity in the fetal sheep heart. Am. J. Physiol. Regul. Integ.r Comp. Physiol. 299, R573–R578 (2010).

    Article  Google Scholar 

  28. Canseco, D. C. et al. Human ventricular unloading induces cardiomyocyte proliferation. J. Am. Coll. Cardiol. 65, 892–900 (2015).

    Article  Google Scholar 

  29. Wohlschlaeger, J. et al. Hemodynamic support by left ventricular assist devices reduces cardiomyocyte DNA content in the failing human heart. Circulation 121, 989–996 (2010).

    Article  CAS  Google Scholar 

  30. Mahmoud, A. I., Porrello, E. R., Kimura, W., Olson, E. N. & Sadek, H. A. Surgical models for cardiac regeneration in neonatal mice. Nat. Protoc. 9, 305–311 (2014).

    Article  CAS  Google Scholar 

  31. Polizzotti, B. D., Ganapathy, B., Haubner, B. J., Penninger, J. M. & Kuhn, B. A cryoinjury model in neonatal mice for cardiac translational and regeneration research. Nat. Protoc. 11, 542–552 (2016).

    Article  CAS  Google Scholar 

  32. deAlmeida, A. C., van Oort, R. J. & Wehrens, X. H. Transverse aortic constriction in mice. J. Vis. Exp. https://doi.org/10.3791/1729 (2010).

  33. Wang, Z. et al. Mechanistic basis of neonatal heart regeneration revealed by transcriptome and histone modification profiling. Proc. Natl Acad. Sci. USA 116, 18455–18465 (2019).

    Article  CAS  Google Scholar 

  34. Li, J. et al. Regulatory T-cells are required for neonatal heart regeneration. Preprint at bioRxiv https://doi.org/10.1101/355065 (2018).

  35. Samak, M. et al. Cardiac hypertrophy: an introduction to molecular and cellular basis. Med. Sci. Monit. Basic Res. 22, 75–79 (2016).

    Article  Google Scholar 

  36. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8, e1000412 (2010).

    Article  Google Scholar 

  37. Appari, M. et al. C1q-TNF-related protein-9 promotes cardiac hypertrophy and failure. Circ. Res. 120, 66–77 (2017).

    Article  CAS  Google Scholar 

  38. Grund, A. et al. TIP30 counteracts cardiac hypertrophy and failure by inhibiting translational elongation. EMBO Mol. Med. 11, e10018 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Heineke, J. et al. CIB1 is a regulator of pathological cardiac hypertrophy. Nat. Med. 16, 872–879 (2010).

    Article  CAS  Google Scholar 

  40. Haubner, B. J., Schuetz, T. & Penninger, J. M. A reproducible protocol for neonatal ischemic injury and cardiac regeneration in neonatal mice. Basic Res. Cardiol. 111, 64 (2016).

    Article  Google Scholar 

  41. Hesse, M. et al. Midbody positioning and distance between daughter nuclei enable unequivocal identification of cardiomyocyte cell division in mice. Circ. Res. 123, 1039–1052 (2018).

    Article  CAS  Google Scholar 

  42. Li, Y. H. et al. Effect of age on peripheral vascular response to transverse aortic banding in mice. J. Gerontol. A 58, B895–B899 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The establishment of the nTAC model was supported by the Deutsche Forschungsgemeinschaft through the Cluster of Excellence REBIRTH (EXC62/3), the Heisenberg Program (HE3658/6-1 and HE3658/6-2), and a research grant HE 3658/11-1. The schematic images used in the figures are from Servier Medical Art (https://smart.servier.com/).

Author information

Authors and Affiliations

Authors

Contributions

M.M.M. and J.H. designed the study, planned all the experiments, and analyzed the data. M.M.M. established the methods and performed the surgeries and experiments. A.A. captured the images. M.M.M. and J.H. wrote the manuscript. J.H. supervised the study. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Mona Malek Mohammadi or Joerg Heineke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Protocols thanks Robert Blanton and Yingjie Chen for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key reference using this protocol

Malek Mohammadi, M. et al. JCI Insight 4, e128336 (2019): https://doi.org/10.1172/jci.insight.128336

Key data used in this protocol

Malek Mohammadi, M. et al. JCI Insight 4, e128336 (2019): https://doi.org/10.1172/jci.insight.128336

Supplementary information

Supplementary Information

Supplementary Materials and Methods.

Reporting Summary

Supplementary Video 1

Video demonstrating the nTAC procedure

Source data

Source Data Fig. 6

Source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malek Mohammadi, M., Abouissa, A. & Heineke, J. A surgical mouse model of neonatal pressure overload by transverse aortic constriction. Nat Protoc 16, 775–790 (2021). https://doi.org/10.1038/s41596-020-00434-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-020-00434-9

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing