Skip to main content
Log in

Catalytic Growth of a Graphite-Like Shell on Transition Metal Nanoparticles with the Formation of Core–Shell Structures

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

Methods for the production of metal–carbon nanoparticles of the core–shell type based on the formation of transition metal nanoparticles and a graphite-like shell on their surface containing to 50 graphene layers are considered. Various types of high-energy impacts or thermal transformations under exposure in a temperature range of 600–850°С were used for the synthesis of metal–carbon nanoparticles from initial metal- and carbon-containing components. Due to their unique properties, nanoparticles of this kind can be of interest as highly efficient catalysts, targeted drug carriers, contrasts in MRI diagnostics, and an element base of electronic and magnetic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Gavrin, A. and Chien, C., J. Appl. Phys., 1990, no. 67, p. 938. https://doi.org/10.1063/1.346100

  2. Bai, L., Wan, H., and Street, S., Colloids Surf. A, 2009, no. 349, p. 23. https://doi.org/10.1016/j.colsurfa.2009.07.041

  3. Wintterlin, J. and Bocquet, M.-L., Surf. Sci., 2009, vol. 603, nos. 10–12, p. 1841. https://doi.org/10.1016/j.susc.2008.08.037

    Article  CAS  Google Scholar 

  4. Wang, J., Xu, F., Jin, H., Chen, Y., and Wang, Y., Adv. Mater., 2017, vol. 29, no. 14, p. 1605838. https://doi.org/10.1002/adma.201605838

    Article  CAS  Google Scholar 

  5. Cui, X., Ren, P., Deng, D., Deng, J., and Bao, X., Energy Environ. Sci., 2016, no. 9, p. 123. https://doi.org/10.1039/c5ee03316k

  6. Fei, H., Yang, Y., Peng, Z., Ruan, G., Zhong, Q., Li, L., Samuel, E.L., and Tour, J.M., ACS Appl. Mater. Interfaces, 2015, no. 7, p. 8083. https://doi.org/10.1021/acsami.5b00652

  7. Lokteva, E.S., Kachevskii, S.A., Turakulova, A.O., Golubina, E.V., Lunin, V.V., Ermakov, A.E., Uimin, M.A., and Mysik, A.A., Rus. J. Phys. Chem. A., 2009, vol. 83, no. 8, p. 1300.

    Article  CAS  Google Scholar 

  8. Herrmann, I.H., Grass, R.N., and Stark, W.J., Nanomedicine, 2009, no. 4, p. 787. https://doi.org/10.2217/nnm.09.55

  9. Xu, Y., Mahmood, M., Li, Z., Dervishi, E., Trigwell, S., Zharov, V.P., Ali, N., Saini, V., Biris, A.R., Lupu, D., Boldor, D., and Biris, A.S., Nanotecnology, 2008, vol. 19, no. 43, p. 43102. https://doi.org/10.1088/0957-4484/19/43/435102

    Article  CAS  Google Scholar 

  10. El-Gendy, A., Magn. Nanostr. Mat., 2018, p. 41. https://doi.org/10.1016/B978-0-12-813904-2.00002-4

    Book  Google Scholar 

  11. Amendola, V., Rizzi, G.A., Polizzi, S., and Meneghetti, M., J. Phys. Chem. B., 2005, vol. 109, p. 23125. https://doi.org/10.1021/jp055783v

    Article  CAS  PubMed  Google Scholar 

  12. Kwong, H.Y., Wong, M.H., Leung, C.W., Wong, Y.W., and Wong, K.H., J. Appl. Phys., 2010, vol. 108, p. 304. https://doi.org/10.1063/1.3457216

    Article  CAS  Google Scholar 

  13. Parka, J.B., Jeonga, S.H., Jeongb, M.S., Kimc, J.Y., and Cho, B.K., Carbon, 2008, vol. 46, no. 5, p. 1369. https://doi.org/10.1016/j.carbon.2008.05.011

    Article  CAS  Google Scholar 

  14. David, B., Pizurova, N., Schneeweiss, O., Bezdicka, P., Morjan, I., and Alexandrescu, R., J. Alloys Compd., 2004, vol. 387, p. 112.

    Article  Google Scholar 

  15. Borysiuka, J., Grabiasa, A., Szczytkob, J., Bystrzejewskic, M., Twardowskib, A., and Langec, H., Carbon, 2008, vol. 46, no. 13, p. 1693. https://doi.org/10.1016/j.carbon.2008.07.011

    Article  CAS  Google Scholar 

  16. Bystrzejewski, M., Huczko, A., Lange, H., Cudzilo, S., and Kicinski, W., Diamond Relat. Mater., 2007, vol. 16, p. 225. https://doi.org/10.1016/j.diamond.2006.05.002

    Article  CAS  Google Scholar 

  17. Si, P.Zh., Zhang, Zh.D., Geng, D.Y., You, C.Y., Zhao, X.G., and Zhang, W.S., Carbon, 2003, vol. 41, p. 247. https://doi.org/10.1016/S0008-6223(02)00280-4

    Article  CAS  Google Scholar 

  18. He, Ch., Zhao, N., Shi, Ch., Du, X., and Li, J., Mater. Chem. Phys., 2006, vol. 97, p. 109. https://doi.org/10.1016/j.matchemphys.2005.07.059

    Article  CAS  Google Scholar 

  19. Ziebro, J., Lukasiewicz, I., Grzmil, B., and Borowiak, E., J. Alloys Compd., 2009, vol. 485, p. 695. https://doi.org/10.1016/j.jallcom.2009.06.039

    Article  CAS  Google Scholar 

  20. Kryazhev, Yu.G., Solodovnichenko, V.S., Anikeeva, I.V., Ismagilov, Z.R., Pod’yacheva, O.Yu., Kvon, R.I., Drozdov, V.A., and Likholobov, V.A., Solid Fuel Chem., 2015, vol. 49, no. 1, p. 1. https://doi.org/10.3103/S0361521915010073

    Article  CAS  Google Scholar 

  21. Solodovnichenko, V.S., Kryazhev, Yu.G., Arbuzov, A.B., Talzi, V.P., Antonicheva, N.V., Drozdov, V.A., Zapevalova, E.S., and Likholobov, V.A., Russ. Chem. Bull., 2016, vol. 65, no. 11, p. 2712. https://doi.org/10.1007/s11172-016-1640-4

    Article  CAS  Google Scholar 

  22. Kryazhev, Yu.G., Zapevalova, E.S., and Semenova, O.N., Ros. Nanotekh., 2016, vol. 11, nos. 7–8, p. 35.

    Google Scholar 

  23. Kryazhev, Yu.G., Anikeeva, I.V., Trenikhin, M.V., Zapevalova, E.S., and Semenova, O.N., Solid Fuel Chem., 2019, vol. 53, no. 5, p. 289. https://doi.org/10.3103/S0361521919050069

    Article  CAS  Google Scholar 

  24. Kryazhev, Yu.G., Zapevalova, E.S., Semenova, O.N., Trenikhin, M.V., Solodovnichenko, V.S., and Likholobov, V.A., Prot. Met. Phys. Chem. Surf., 2017, no. 2, p. 268. https://doi.org/10.1134/S2070205117020150

Download references

Funding

This work was carried out within the framework of a state contract of the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences (project no. AAAA-A19-119050790074-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. G. Kryazhev, E. S. Zapevalova or I. V. Anikeeva.

Additional information

Translated by V. Makhlyarchuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryazhev, Y.G., Zapevalova, E.S. & Anikeeva, I.V. Catalytic Growth of a Graphite-Like Shell on Transition Metal Nanoparticles with the Formation of Core–Shell Structures. Solid Fuel Chem. 54, 401–405 (2020). https://doi.org/10.3103/S0361521920060063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521920060063

Keywords:

Navigation