Skip to main content
Log in

Metasurfaces in Optics: Physical Basis and Results Achieved. Review

  • OPTICAL INFORMATION TECHNOLOGIES
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

The current state of development and prospects of using metasurfaces in optics, in particular, in holography, is reviewed. Special attention is paid to the physics of the phase delay control of the meta-atom scattered radiation as well as to the transformation of the incident wavefront by the metasurface. A number of examples are presented to demonstrate the effectiveness of radiation focusing and the formation of holographic images by metasurfaces of different types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. H.-T. Chen, A. J. Taylor, and N. Yu, ‘‘A review of metasurfaces: physics and applications,’’ Rep. Prog. Phys. 79, 076401 (2016). https://doi.org/10.1088/0034-4885/79/7/076401

  2. M. A. Remnev and V. V. Klimov, ‘‘Metasurfaces: a new look at Maxwell’s equations and new ways to control light,’’ Phys.-Usp. 61, 157–190 (2018). https://doi.org/10.3367/UFNe.2017.08.038192

    Article  Google Scholar 

  3. S. Sun, Q. He, J. Hao, S. i Xiao, and L. Zhou, ‘‘Electromagnetic metasurfaces: physics and applications,’’ Adv. Opt. Photonics 11, 380–479 (2019). https://doi.org/10.1364/AOP.11.000380

    Article  ADS  Google Scholar 

  4. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1980).

    MATH  Google Scholar 

  5. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009; Pan Stanford Publishing, Singapore, 2014).

  6. X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, ‘‘Dual-polarity plasmonic metalens for visible light,’’ Nat. Common. 3, 1198 (2012). https://doi.org/10.1038/ncomms2207

    Article  ADS  Google Scholar 

  7. L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, ‘‘Dispersionless phase discontinuities for controlling light propagation,’’ Nano Lett. 12, 5750–5755 (2012). https://doi.org/10.1021/nl303031j

    Article  ADS  Google Scholar 

  8. M. Kang, J. Chen, X.-L. Wang, and H.-T. Wang, ‘‘Twisted vector field from an inhomogeneous and anisotropic metamaterial,’’ J. Opt. Soc. Am. B 29, 572–576 (2012). https://doi.org/10.1364/JOSAB.29.000572

    Article  ADS  Google Scholar 

  9. D. N. Klyshko, ‘‘Berry geometric phase in oscillatory processes,’’ Phys.-Usp. 36, 1005–1019 (1993). https://doi.org/10.1070/PU1993v036n11ABEH002178

    Article  Google Scholar 

  10. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1968)

    Google Scholar 

  11. F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (The MIT Press, Cambridge, 1973).

    Book  Google Scholar 

  12. S. T. Bobrov, G. I. Greisukh, and Yu. G. Turkevich, The Diffraction Optics Elements and Systems (Mashinostroenie, Leningrad, 1986).

    Google Scholar 

  13. G. I. Greisukh, S. T. Bobrov, and S. A. Stepanov, Optics of Diffractive and Gradient-Index Elements and Systems (SPIE, Bellingham, 1997).

    Book  Google Scholar 

  14. S. Ishii, V. M. Shalaev, and A. V. Kildishev, ‘‘Holey-metal lenses: sieving single modes with proper phases,’’ Nano Lett. 13, 159–163 (2013). https://doi.org/10.1021/nl303841n

    Article  ADS  Google Scholar 

  15. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, ‘‘Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,’’ Nano Lett. 12, 4932–4936 (2012). https://doi.org/10.1021/nl302516v

    Article  ADS  Google Scholar 

  16. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, ‘‘Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,’’ Science 352, 1190–1194 (2016). https://doi.org/10.1126/science.aaf6644

    Article  ADS  Google Scholar 

  17. G. I. Greisukh, E. G. Ezhov, and S. A. Stepanov, ‘‘Comparative analysis of chromatic aberration of diffraction and refraction lenses,’’ Comput. Opt. 28, 60–65 (2005).

    Google Scholar 

  18. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, ‘‘Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces,’’ Optica 4, 625–632 (2017). https://doi.org/10.1364/OPTICA.4.000625

    Article  ADS  Google Scholar 

  19. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, ‘‘Broadband achromatic optical metasurface devices,’’ Nat. Commun. 8, 187 (2017). https://doi.org/10.1038/s41467-017-00166-7

    Article  ADS  Google Scholar 

  20. S. N. Khonina, K. N. Tukmakov, S. A. Degtyarev, A. S. Reshetnikov, V. S. Pavelyev, B. A. Knyazev, and Yu. Yu. Choporova, ‘‘Design, fabrication and investigation of a subwavelength axicon for terahertz beam polarization transforming,’’ Comput. Opt. 43, 756–764 (2019). https://doi.org/10.18287/2412-6179-2019-43-5-756-764

    Article  ADS  Google Scholar 

  21. V. V. Kotlyar and A. G. Nalimov, ‘‘A vector optical vortex generated and focused using a metalens,’’ Comput. Opt. 41, 645–654 (2017). https://doi.org/10.18287/2412-6179-2017-41-5-645-654

    Article  ADS  Google Scholar 

  22. S. Degtyarev, D. Savelyev, S. Khonina, and N. Kazanskiy, ‘‘Metasurfaces with continuous ridges for inverse energy flux generation,’’ Opt. Express 27, 15129–15135 (2019). https://doi.org/10.1364/OE.27.015129

    Article  ADS  Google Scholar 

  23. M. Y. Shalaginov, S. An, F. Yang, P. Su, D. Lyzwa, A. Agarwal, H. Zhang, J. Hu, and T. Gu, ‘‘A single-layer panoramic metalens with \(>170^{\circ}\) diffraction-limited field of view,’’ arXiv:1908.03626[physics.optics] (2019).

  24. S. Thibault, ‘‘Consumer electronic optics: how small a lens can be using metasurfaces,’’ Proc. SPIE 11104, 1110406 (2019). https://doi.org/10.1117/12.2531932

  25. P. Genevet and F. Capasso, ‘‘Holographic optical metasurfaces: a review of current progress,’’ Rep. Prog. Phys. 78, 024401 (2015). https://doi.org/10.1088/0034-4885/78/2/024401

  26. L. Huang, S. Zhang, and T. Zentgraf, ‘‘Metasurface holography: from fundamentals to applications,’’ Nanophotonics 7, 1169–1190 (2018). https://doi.org/10.1515/nanoph-2017-0118

    Article  Google Scholar 

  27. Q. Jiang, G. Jin, and L. Cao, ‘‘When metasurface meets hologram: principle and advances,’’ Adv. Opt. Photonics 11, 518–576 (2019). https://doi.org/10.1364/AOP.11.000518

    Article  ADS  Google Scholar 

  28. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, ‘‘Metasurface holograms reaching 80\(\%\) efficiency,’’ Nat. Nanotechnol. 10, 308–312 (2015). https://doi.org/10.1038/nnano.2015.2

    Article  ADS  Google Scholar 

  29. D. Wen, F. Yue, G. Li, G. Zheng, K. Chan, S. Chen, M. Chen, K. F. Li, P. W. H. Wong, K. W. Cheah, E. Y. B. Pun, S. Zhang, and X. Chen, ‘‘Helicity multiplexed broadband metasurface holograms,’’ Nat. Commun. 6, 8241 (2015). https://doi.org/10.1038/ncomms9241

    Article  ADS  Google Scholar 

  30. R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, ‘‘Broadband high-efficiency dielectric metasurfaces for the visible spectrum,’’ Proc. Natl. Acad. Sci. U.S.A. 113, 10473–10478 (2016). https://doi.org/10.1073/pnas.1611740113

    Article  ADS  Google Scholar 

  31. K. Huang, Z. Dong, S. Mei, L. Zhang, Y. Liu, H. Liu, H. Zhu, J. Teng, B. Luk’yanchuk, J. K. W. Yang, and C.-W. Qiu, ‘‘Silicon multi-meta-holograms for the broadband visible light,’’ Laser Photonics Rev. 10, 500–509 (2016). https://doi.org/10.1002/lpor.201500314

    Article  ADS  Google Scholar 

  32. K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Yu. S. Kivshar, ‘‘Efficient polarization-insensitive complex wavefront control using Huygens’ metasurfaces based on dielectric resonant meta-atoms,’’ ACS Photonics 3, 514–519 (2016). https://doi.org/10.1021/acsphotonics.5b00678

    Article  Google Scholar 

  33. B. Wang, F. Dong, Q.-T. Li, D. Yang, C. Sun, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, ‘‘Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms,’’ Nano Lett. 16, 5235–5240 (2016). https://doi.org/10.1021/acs.nanolett.6b02326

    Article  ADS  Google Scholar 

  34. Q.-T. Li, F. Dong, B. Wang, F. Gan, J. Chen, Z. Song, L. Xu, W. Chu, Y.-F. Xiao, Q. Gong, and Y. Li, ‘‘Polarization-independent and high-efficiency dielectric metasurfaces for visible light,’’ Opt. Express 24, 16309–16319 (2016). https://doi.org/10.1364/OE.24.016309

    Article  ADS  Google Scholar 

  35. F. Zhou, Y. Liu, and W. Cai, ‘‘Plasmonic holographic imaging with V-shaped nanoantenna array,’’ Opt. Express 21, 4348–4354 (2013). https://doi.org/10.1364/OE.21.004348

    Article  ADS  Google Scholar 

  36. Q. Wang, X. Zhang, Y. Xu, J. Gu, Y. Li, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, ‘‘Broadband metasurface holograms: toward complete phase and amplitude engineering,’’ Sci. Rep. 6, 32867 (2016). https://doi.org/10.1038/srep32867

    Article  ADS  Google Scholar 

  37. B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E.-B. Kley, F. Lederer, A. Tünnermann, and T. Pertsch, ‘‘Spatial and spectral light shaping with metamaterials,’’ Adv. Mater. 24, 6300–6304 (2012). https://doi.org/10.1002/adma.201202540

    Article  Google Scholar 

  38. X. Ni1, A. V. Kildishev, and V. M. Shalaev, ‘‘Metasurface holograms for visible light,’’ Nat. Commun. 4, 2807 (2013). https://doi.org/10.1038/ncomms3807

  39. W. Wan, J. Gao, and X. Yang, ‘‘Full-color plasmonic metasurface holograms,’’ ACS Nano 10, 10671–10680 (2016). https://doi.org/10.1021/acsnano.6b05453

    Article  Google Scholar 

  40. L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, ‘‘Three-dimensional optical holography using a plasmonic metasurface,’’ Nat. Commun. 4, 2808 (2013). https://doi.org/10.1038/ncomms3808

    Article  ADS  Google Scholar 

  41. Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, ‘‘Aluminum plasmonic multicolor meta-hologram,’’ Nano Lett. 15, 3122–3127 (2015). https://doi.org/10.1021/acs.nanolett.5b00184

    Article  ADS  Google Scholar 

  42. W. Zhao, B. Liu, H. Jiang, J. Song, Y. Pei, and Y. Jiang, ‘‘Full-color hologram using spatial multiplexing of dielectric metasurface,’’ Opt. Lett. 41, 148–150 (2016). https://doi.org/10.1364/OL.41.000147

    Article  ADS  Google Scholar 

  43. X. Li, L. Chen, Y. Li, X. Zhang, M. Pul, Z. Zhao, X. Ma, Y. Wang, M. Hong, and X. Luo, ‘‘Multicolor 3D meta-holography by broadband plasmonic modulation,’’ Sci. Adv. 2, 1601102 (2016). https://doi.org/10.1126/sciadv.1601102

  44. Using power of light allowed creating rewritable holographic material. https://www.dailytechinfo.org/news/8549-ispolzovanie-sily-sveta-pozvolilo-sozdat-perezapisyvaemyy-golograficheskiy-material.html. Cited September 27, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Greisukh.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greisukh, G.I., Danilov, V.A., Ezhov, E.G. et al. Metasurfaces in Optics: Physical Basis and Results Achieved. Review. Optoelectron.Instrument.Proc. 56, 109–121 (2020). https://doi.org/10.3103/S8756699020020077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020020077

Keywords:

Navigation