Skip to main content
Log in

Digital Hyperspectral Holography

  • OPTICAL INFORMATION TECHNOLOGIES
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A method and an optical scheme for recording digital hyperspectral holograms in the light of an incoherent source are considered. The optical scheme includes an interferometer with a scanning mirror for generating reference waves. The set of complex amplitudes of the object field is calculated by Fourier transform of the interferograms in each pixel of the recording matrix. Experimental data on holographic images of microobjects obtained with different optical schemes (transmission and reflection) are presented. A scheme of the common path interferometer is considered where the reference wave is part of the object field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, ‘‘The Fourier spectrometer as a holographic micro-object imaging system in low-coherence light,’’ Meas. Tech. 55, 1256–1262 (2013). https://doi.org/10.1007/s11018-013-0117-1

    Article  Google Scholar 

  2. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, ‘‘Spectrally-spatial fourier-holography,’’ Opt. Express 21, 24985–24990 (2013). https://doi.org/10.1364/OE.21.024985

    Article  ADS  Google Scholar 

  3. G. S. Kalenkov, S. G. Kalenkov, and A. E. Shtan’ko, ‘‘Hyperspectral holographic Fourier-microscopy,’’ Quantum Electron. 45, 333–338 (2015). https://doi.org/10.1070/QE2015v045n04ABEH015584

    Article  ADS  Google Scholar 

  4. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, ‘‘Hyperspectral holography: an alternative application of the Fourier transform spectrometer,’’ J. Opt. Soc. Am. B 34 (5), B49–B55 (2017). https://doi.org/10.1364/JOSAB.34.000B49

    Article  Google Scholar 

  5. R. J. Bell, Introductory Fourier Transform Spectroscopy (Academic Press, New York, 1972). https://doi.org/10.1016/B978-0-12-085150-8.X5001-3

    Book  Google Scholar 

  6. D. Hillmann, C. Luhrs, T. Bonin, P. Koch, and G. Hüttmann, ‘‘Holoscopy—holographic optical coherence tomography,’’ Opt. Lett. 36, 2390–2392 (2011). https://doi.org/10.1364/OL.36.002390

    Article  ADS  Google Scholar 

  7. V. I. Bobrinev, M. L. Galkin, M. S. Kovalev, P. I. Malinina, and S. B. Odinokov, ‘‘Investigation of computer-generated Fresnel holograms for wavefront sensors,’’ Optoelectron., Instrum. Data Process. 54, 26–31 (2018). https://doi.org/10.3103/S8756699018010053

    Article  Google Scholar 

  8. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, ‘‘Hyperspectral digital holography of microobjects,’’ Proc. SPIE 9386, 2085259 (2015). https://doi.org/10.1117/12.2085259

  9. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, ‘‘Holographic Fourier transform spectroscopy of biosamples,’’ in Proc. Light, Energy and the Environment. OSA Technical Digest (Optical Soc. America, 2016), p. FTu2E.7. https://doi.org/10.1364/FTS.2016.FTu2E.7

  10. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, ‘‘Self-reference hyperspectral holographic microscopy,’’ J. Opt. Soc. Am. A 36 (2), A34–A38 (2019). https://doi.org/10.1364/JOSAA.36.000A34

    Article  ADS  Google Scholar 

  11. G. S. Kalenkov, S. G. Kalenkov, I. G. Meerovich, A. E. Shtanko, and N. Yu. Zaalishvili, ‘‘Hyperspectral holographic microscopy of bio-objects based on a modifed Linnik interferometer,’’ Laser Phys. 29, 016201 (2018). https://doi.org/10.1088/1555-6611/aaf228

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 18-19-00450.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Kalenkov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalenkov, S.G., Kalenkov, G.S. Digital Hyperspectral Holography. Optoelectron.Instrument.Proc. 56, 157–162 (2020). https://doi.org/10.3103/S8756699020020089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020020089

Keywords:

Navigation