Skip to main content
Log in

Multi-Factor Model of an Optical Encryption System with Spatially Incoherent Illumination

  • MODELING IN PHYSICAL AND TECHNICAL RESEARCH
  • Published:
Optoelectronics, Instrumentation and Data Processing Aims and scope

Abstract

A multi-factor model of an optical encryption system with spatially incoherent illumination is proposed. This model takes into account the influence of the recording photosensor noise, changes in image resoltion during transmission through the optical system, spurious illumination, and noise from the synthesis of the encryption diffraction optical element on the quality of the decoded image. It is shown that the proposed model correlates well with the optical experiment (the deencryption error differs by no more than 6\(\%\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. G. Unnikrishnan, J. Joseph, and K. Singh, ‘‘Optical encryption by double-random phase encryption in the fractional Fourier domain,’’ Opt. Lett. 25, 887–889 (2000). doi 10.1364/OL.25.000887

    Article  ADS  Google Scholar 

  2. C. Lin, X. Shen, and B. Li, ‘‘Four-dimensional key design in amplitude, phase, polarization and distance for optical encryption based on polarization digital holography and QR code,’’ Opt. Express 22, 20727–20739 (2014). doi 10.1364/OE.22.020727

    Article  ADS  Google Scholar 

  3. S. Liansheng, C. Yin, L. Bing, T. Ailing, and A. K. Asundi, ‘‘Optical image encryption via high-quality computational ghost imaging using iterative phase retrieval,’’ Laser Phys. Lett. 15, 075204 (2018). doi 10.1088/1612-202X/aac002

  4. Z. Wang1, X. Lv, H. Wang, C. Hou, Q. Gong, and Y. Qin, ‘‘Hierarchical multiple binary image encryption based on a chaos and phase retrieval algorithm in the Fresnel domain,’’ Laser Phys. Lett. 13, 036201 (2016). doi 10.1088/1612-2011/13/3/036201

  5. V. V. Krasnov, S. N. Starikov, R. S. Starikov, and P. A. Cheremkhin, ‘‘Optical encryption of arrays of binary digits in spatially incoherent light,’’ Russ. Phys. J. 58, 1394–1401 (2016). doi 10.1007/s11182-016-0661-7

    Article  Google Scholar 

  6. P. Refregier and B. Javidi, ‘‘Optical image encryption based on input plane and Fourier plane random encryption,’’ Opt. Lett. 20, 767–769 (1995). doi 10.1364/OL.20.000767

    Article  ADS  Google Scholar 

  7. E. Tajahuerce, J. Lancis, B. Javidi, and P. Andrés, ‘‘Optical security and encryption with totally incoherent light,’’ Opt. Lett. 26, 678–680 (2001). doi 10.1364/OL.26.000678

    Article  ADS  Google Scholar 

  8. A. V. Shifrina, N. N. Evtikhiev, and V. V. Krasnov, ‘‘Application of input amplitude masks in scheme of optical image encryption with spatially-incoherent illumination,’’ J. Phys.: Conf. Ser. 737, 012063 (2016). doi 10.1088/1742-6596/737/1/012063

  9. N. N. Evtikhiev, S. N. Starikov, P. A. Cheryomkhin, V. V. Krasnov, and V. G. Rodin, ‘‘Method of optical image encryption by time integration,’’ Proc. SPIE 8429, 84291P (2012). doi 10.1117/12.922540

  10. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, V. G. Rodin, and A. V. Shifrina, Method of attack on schemes of optical encryption with spatially incoherent illumination,’’ Proc. SPIE 10433, 104330B (2017). doi 10.1117/12.2278016

  11. N. N. Evtikhiev, V. V. Krasnov, P. A. Cheremkhin, and A. V. Shifrina, ‘‘Application of additional input amplitude masks in schemes of optical image encryption with spatially incoherent illumination,’’ Comput. Opt. 41, 391–398 (2017). doi 10.18287/2412-6179-2017-41-3-391-398

    Article  ADS  Google Scholar 

  12. Z. Liu, J. Dai, X. Sun, and S. Liu, ‘‘Color image encryption by using the rotation of color vector in Hartley transform domains,’’ Opt. Lasers Eng. 48, 800–805 (2010). doi 10.1016/j.optlaseng.2010.02.005

    Article  Google Scholar 

  13. J. F. Barrera, A. Mira, and R. Torroba, ‘‘Optical encryption and QR codes: secure and noise-free information retrieval,’’ Opt. Express 21, 5373–5378 (2013). doi 10.1364/OE.21.005373

    Article  ADS  Google Scholar 

  14. B. Javidi, A. Carnicer, M. Yamaguchi, et al., ‘‘Roadmap on optical security,’’ J. Opt. 18, 083001 (2016). doi 10.1088/2040-8978/18/8/083001

  15. J. F. Barrera, A. Mira-Agudelo, and R. Torroba, ‘‘Experimental QR code optical encryption: noise-free data recovering,’’ Opt. Lett. 39, 3074–3077 (2014). doi 10.1364/OL.39.003074

    Article  ADS  Google Scholar 

  16. R. Kumar and B. Bhaduri, ‘‘Optical image encryption in Fresnel domain using spiral phase transform,’’ J. Opt. 19, 095701 (2017). doi 10.1088/2040-8986/aa7cb1

  17. M.-D. Zhao, X.-Z. Gao, Y. Pan, G.-L. Zhang, C. Tu, Y. Li, and H.-T. Wang, ‘‘Image encryption based on fractal-structured phase mask in fractional Fourier transform domain,’’ J. Opt. 20, 045703 (2018). doi 10.1088/2040-8986/aab247

  18. J.-X. Chen, Z.-L. Zhu, C. Fu, L.-B. Zhang, and Y. Zhang, ‘‘Cryptanalysis and improvement of an optical image encryption scheme using a chaotic Baker map and double random phase encryption,’’ J. Opt. 16, 125403 (2014). doi 10.1088/2040-8978/16/12/125403

  19. P. A. Cheremkhin, V. V. Krasnov, V. G. Rodin, and R. S. Starikov, ‘‘QR code optical encryption using spatially incoherent illumination,’’ Laser Phys. Lett. 14, 026202 (2017). doi 10.1088/1612-202X/aa5242

  20. J. W. Goodman, Introduction to Fourier Optics (Mir, Moscow, 1970; McGraw-Hill, New York, 1968)

  21. A. N. Tikhonov and V. Ya. Arsenin, Solutions of Ill-Posed Problems (Nauka, Moscow, 1979; Wiley, Washington, DC, 1977).

  22. L. B. Lesem, P. M. Hirsch, and J. A. Jordan, ‘‘The kinoform: A new wavefront reconstruction device,’’ IBM J. Res. Dev. 13, 150–155 (1969). doi 10.1147/rd.132.0150

    Article  Google Scholar 

  23. J. R. Fienup, ‘‘Invariant error metrics for image reconstruction,’’ Appl. Opt. 36, 8352–8357 (1997). doi 10.1364/AO.36.008352

    Article  ADS  Google Scholar 

  24. H. Akahori, ‘‘Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform,’’ Appl. Opt. 25, 802–811 (1986). doi 10.1364/AO.25.000802

    Article  ADS  Google Scholar 

  25. A. P. Bondareva, P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, R. S. Starikov, and S. N. Starikov, ‘‘Measurement of characteristics and phase modulation accuracy increase of LC SLM ‘holoEye PLUTO VIS’ ’’ J. Phys.: Conf. Ser. 536, 012011 (2014). doi 10.1088/1742-6596/536/1/012011

  26. P. A. Cheremkhin, N. N. Evtikhiev, V. V. Krasnov, V. G. Rodin, and S. N. Starikov, ‘‘Modified temporal noise measurement method with automatic segmentation of non-uniform target, its accuracy estimation and application to cameras of different types,’’ Opt. Eng. 53, 102107 (2014). doi 10.1117/1.OE.53.10.102107

Download references

Funding

The work was supported by the Russian Science Foundation (grant no. 19-19-00498).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shifrina.

Additional information

Translated by V. A. Alekseev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evtikhiev, N.N., Krasnov, V.V., Starikov, R.S. et al. Multi-Factor Model of an Optical Encryption System with Spatially Incoherent Illumination. Optoelectron.Instrument.Proc. 56, 176–182 (2020). https://doi.org/10.3103/S8756699020020041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S8756699020020041

Keywords:

Navigation