Skip to main content
Log in

The Effect of Doping on the Structure and Properties of the Diamond–(WC–Co) Composite Material. Review

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

Doping of the diamond–(WC–Co) composite material by the chemical elements Ti, Zr, V, Ta, Nb, Cr, Mo, Ni, Re, Os, Si, and B is considered. The influence of each element on the composition, structure, and properties of the (WC–Co)-matrix and the interface between the diamond and the (WC–Co)-matrix is considered. The potential of doping with a combination of nickel, chromium, and silicon is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bondarenko, N.A., ISM High-performance tools for drilling of oil and gas wells. Review, J. Superhard Mater., 2018, vol. 40, no. 5, pp. 355–364.

    Article  Google Scholar 

  2. Kolodnits’kyi, V.M. and Bagirov, O.E., On the structure formation of diamond containing composites used in drilling and stone working tools (A review), J. Superhard Mater., 2017, vol. 39, no. 1, pp. 1–17.

    Article  Google Scholar 

  3. Herber, R.S., Shubert, W.D., and Lux, B., Hardmetals with “rounded” WC grains, Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 360–364.

    Article  CAS  Google Scholar 

  4. Na, L., Zhang, W., and Peng, Y., Effect of the dispersity of cubic phase on the microstructure and mechanical properties of ultra fine WC–10Co based cemented carbides, Proc. Euro PM2015 Congr. & Exhibition, Reams, 2015, pp. 120–125.

  5. Liu, M., Huang, X., Duan, S., Shao, D., Cui, Y., and Yao, Z., Diffraction-contrast study of microstructure and deformation process of WC–Co cemented carbides, Int. J. Refract. Met. Hard Mater., 1983, vol. 2, no. 3, pp. 129–132.

    Google Scholar 

  6. Sarin, V.K. and Johannesson, T., On the deformation of WC–Co cemented carbides, Met. Sci., 1975, vol. 9, pp. 476–479.

    Article  Google Scholar 

  7. Vasel, H.C., Krawitz, A.D., Drake, E.F., and Kenik, A.E., Binder deformation in WC–(Co,Ni) cemented carbide composition, Metall. Trans. A, 1985, vol. 16, pp. 2309–2327.

    Article  Google Scholar 

  8. Andersson, G. and Jansson, B., The solubility of cubic carbide formers in liquid cobalt, Proc. 15th Int. Plansee Seminar, Kneringer, G., Rödhammer, P., and Wildner, H., Eds., Reutte: Plansee Group, 2001, vol. 2, no. HM87, pp. 662–676.

  9. Lisovsky, A.F. and Tkachenko, N.V., On the Use of the MMI-phenomenon for the formation of nanostructures in WC–Co cemented carbides, Int. J. Refract. Met. Hard Mater., 1997, vol. 15, no. 4, pp. 227–235.

    Article  CAS  Google Scholar 

  10. Henjered, A., Hellsing, M., Andrén, H.-O., and Nordén, H., Quantitative microanalysis of carbide/carbide interfaces in WC–Co-base cemented carbides, Mater. Sci. Technol., 1986, vol. 2, pp. 847–855.

    Article  CAS  Google Scholar 

  11. Östberg, G., Buss, K., Christensen, M., Norgren, S., Andrén, H.-O., Mari, D., Reineck, I., and Wahnström, G., Effect of TaC on plastic deformation of WC–Co and Ti(C, N)–WC–Co, Int. J. Refract. Met. Hard Mater., 2006, vol. 24, pp. 145–154.

    Article  Google Scholar 

  12. Weidow, J. and Andrén, H.-O., Grain and phase boundary segregation in WC–Co with small V, Cr or Mn additions, Acta Mater., 2010, vol. 58, pp. 3888–3894.

    Article  CAS  Google Scholar 

  13. Weidow, J. and Andren, H.-O., Grain and phase boundary segregation in WC–Co with TiC, ZrC, NbC or TaC additions, Int. J. Refract. Met. Hard Mater., 2011, vol. 29, no. 1, pp. 38–43.

    Article  CAS  Google Scholar 

  14. Brookes, A.K., Fine and ultrafine cemented carbides, Proc. 15th Int. Plansee Seminar, Kneringer, G., Rödhammer, P., and Wildner, H., Eds., Reutte: Plansee Group, 2001, vol. 56, no. 11, pp. 24–27.

  15. Warbichel, P., Hofen, F., Grogger, W., and Lackner, A., EFTEM-EELS characterization of VC and Cr2C2 doped cemented carbides, Proc. 15th Int. Plansee Seminar, Kneringer, G., Rödhammer, P., and Wildner, H., Eds., Reutte: Plansee Group, 2001, vol. 2, pp. 65–74.

  16. Hayoshi, K., Fuke, Y., and Suzuki, H., Effects of addition carbides on the grain size of WC–Co alloy, J. Jpn. Soc. Powder Powder Metall., 1972, vol. 19, no. 2, pp. 67–71.

    Article  Google Scholar 

  17. Panov, V.S., Influence of the composition and structure of the binder phase of hard alloys on their performance properties, in Porodorazrushayushchii i metalloobrabatyvayushchii instrument—tekhnika i tekhnologiya ego primeneniya (Rock-Destruction and Metal-Working Tools: Techniques and Technology of Their Applications), Kyiv: Inst. Sverkhtverd. Mater. im. V.N. Bakulya, Nats. Akad. Nauk Ukr., 2019, no. 22, pp. 351–362.

  18. Tsypin, N.V., Iznosostoikost’ kompozitsionnykh almazosoderzhashchikh materialov dlya burovogo instrumenta (Wear-Resistance of Composite Diamond-Containing Materials for Drilling Tools), Kiev: Naukova Dumka, 1983.

  19. World Directory and Handbook of Hardmetals and Hard Materials, Brookes, K.J.A., Ed., East Barnet: Int. Carbide Data, 1992.

    Google Scholar 

  20. Lisovsky, A.F., Properties of cemented carbides alloyed by metal melt treatment, Proc. 15th Int. Plansee Seminar, Kneringer, G., Rodhammer, P., and Wildner, H., Eds., Reutte: Plansee Group, 2001, vol. 2, no. HM23, pp. 168–179.

  21. Lisovsky, A.F., Some problems on technical use of the phenomenon of metal melts imbibition of sintered composites, Powder Metall. Int., 1989, vol. 21, no. 6, pp. 7–10.

    Google Scholar 

  22. Lisovsky, A.F., Deconsolidation of polycrystalline skeletons in sintered composite materials, Mater. Sci. Forum, 2009, vol. 624, pp. 43–56.

    Article  CAS  Google Scholar 

  23. Lisovsky, A.F., On the imbibition of metal melts by sintered carbides, Powder Metall. Int., 1987. vol. 19, no. 5, pp. 18–21.

    Google Scholar 

  24. Lisovsky, A.F. and Tkachenko, N.V., Submicrostructure of WC–Co hard alloys doped by transition metals by the technology of the treatment metal metals, Powder Metall., 1997, nos. 11–12, pp. 76–83.

  25. Lisovsky, A.F., Bondarenko, N.A., and Davidenko, S.A., Structure and properties of the diamond–WC–6Co composite doped by 1.5 wt % of CrSi2, J. Superhard Mater., 2016, vol. 38, no. 6, pp. 382–392.

    Article  Google Scholar 

  26. Lisovsky, A.F. and Tkachenko, N.V., Composition and structure of cemented carbides produced by MMT-process, Powder Metall. Int., 1991, vol. 23, no. 3, pp. 157–161.

    Google Scholar 

  27. Lebedev, A.F. and Chechin, E.V., Selecting allowable stresses in computing structures according to the static strength criterion, Strength Mater., 1980, vol. 12, no. 4, pp. 435–438.

    Article  Google Scholar 

  28. Fry, P.R. and Garrett, G.G., Fatigue crack growth behavior of tungsten carbide–cobalt hardmetals, J. Mater. Sci., 1988, vol. 23, pp. 2325–2338.

    Article  CAS  Google Scholar 

  29. Torres, Y., Tarrado, J.M., Coureaux, D., et al., Fracture and fatigue of rock bit cemented carbides: Mechanics and mechanisms of crack growth resistance under monotonic and cyclic loading, Int. J. Refract. Met. Hard Mater., 2014, vol. 45, pp. 179–188.

    Article  CAS  Google Scholar 

  30. Mingard, K.P., Jones, H.G., Gee, M.G., Roebuck, B., and Nunn, J.W., In situ observation of crack growth in a WC–Co hardmetal and characterization of crack growth morphologies by EBSD, Int. J. Refract. Met. Hard Mater., 2013, vol. 36, pp. 136–142.

    Article  CAS  Google Scholar 

  31. Lisovsky, A.F., Tkachenko, N.V., and Kebko, V., Structure of a binding phase in Re-alloyed WC–Co cemented carbides, Int. J. Refract. Met. Hard Mater., 1991, vol. 10, pp. 33–36.

    Article  Google Scholar 

  32. Panov, V.S., Chuvilin, A.M., and Fal’kovskii, V.A., Tekhnologiya i svoistva tverdykh splavov i izdelii iz nikh (Technology and Properties of Solid Alloys and Products from Them), Moscow: Mosk. Inst. Stali Splavov, 2004.

  33. Chaporova, I.N., Kudryavtseva, V.I., and Sapronova, Z.N., Investigation of the structure and properties of alloys in the WC–Re–Co system, Nauchn. Tr. VNIITS, 1984, no. 12, pp. 7–10.

  34. Lisovsky, A.F., Cemented carbides alloyed with ruthenium, osmium and rhenium, Powder Metall. Met. Ceram., 2000, vol. 39, nos. 9–10, pp. 428–433.

    Article  Google Scholar 

  35. Lisovsky, A.F. and Bondarenko, N.A., The role of interphase and contact surfaces in the formation of structures and properties of diamond–(WC–Co) composites. A review, J. Superhard Mater., 2014, vol. 36, no. 3, pp. 145–155.

    Article  Google Scholar 

  36. Bondarenko, N.A., Novikov, N.V., Mechnik, V.A., Olejnik, G.S., and Vereshaka, E.S., Structural peculiarities of highly wear-resistant superhard composites of the diamond–WC–6CO carbide system, Sverkhtverd. Mater., 2004, no. 6, pp. 3–15.

  37. Fedoseev, D.V., Novikov, N.V., Vishnevskii, A.S., and Teremetskaya, I.G., Almaz: Spravochnik (A Diamond: Handbook), Kiev: Naukova Dumka, 1981.

  38. Tumanov, V.I., Svoistva splavov sistemy karbid vol’frama–kobal’t (Properties of Wo–Co Alloys), Moscow: Metallurgiya, 1971.

  39. Bondarenko, N.A., Zhukovskii, A.N., and Mechnik, V.A., Analysis of the basic theories of sintering of materials. 1. Sintering under isothermal and nonisothermal conditions (A review), Sverkhtverd. Mater., 2006, no. 6, pp. 3–17.

  40. Bondarenko, N.A. and Mechnik, V.A., The influence of transition area diamond-matrix on wear resistance and operation properties of drilling tool produced by ISM, SOCAR Proc., 2011, no. 2, pp. 18–24.

  41. Bondarenko, N.A. and Mechnik, V.A., Drilling oil and gas wells by ISM diamond tools, SOCAR Proc., 2012, no. 3, pp. 6–12.

  42. Novikov, N.V., Bondarenko, N.A., Zhukovskii, A.N., and Mechnik, V.A., The effect of diffusion and chemical reactions on the structure and properties of drill bit inserts. 1. Kinetic description of systems Cdiamond–VK6 and Cdiamond–(VK6–CrB2–W2B5), Fiz. Mezomekh., 2005, vol. 8, no. 2, pp. 99–106.

    CAS  Google Scholar 

  43. Lisovsky, A.F. and Gracheva, T.E., Some peculiarities of structure formation of (Ti,W)C–WC–Co sintered carbides, Int. J. Refract. Met. Hard Mater., 1992, vol. 11, no. 2, pp. 83–87.

    Article  CAS  Google Scholar 

  44. Lisovsky, A.F., Gracheva, T.E., and Kulakovsky, V.N., Composition and properties of (Ti,W)C–WC–Co sintered carbides alloyed by MMT-process, Int. J. Refract. Met. Hard Mater., 1995, vol. 13, no. 6, pp. 379–383.

    Article  CAS  Google Scholar 

  45. Davidenko, S.A., On the stability of isolated pores in cemented carbides (Ti,W)C–WC–Co, J. Superhard Mater., 2019, vol. 41, no. 2, pp. 114–118.

    Article  Google Scholar 

  46. Lisovsky, A.F., Thermodynamics of isolated pores filling with liquid in sintered composite materials, Metall. Mater. Trans. A, 1994, vol. 25, no. 4, pp. 733–740.

    Article  Google Scholar 

  47. Davidenko, S.A., On the formation of metal interlayers in the diamond–(Ti,W)C–WC–Co composite, J. Superhard Mater., 2020, vol. 42, no. 4, pp. 283–285.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. O. Bondarenko or S. A. Davidenko.

Additional information

Translated by S. Semenova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondarenko, M.O., Davidenko, S.A. The Effect of Doping on the Structure and Properties of the Diamond–(WC–Co) Composite Material. Review. J. Superhard Mater. 42, 287–293 (2020). https://doi.org/10.3103/S1063457620050123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457620050123

Keywords:

Navigation