Skip to main content
Log in

Structure and Properties of the Al–B–Si–C Coatings Deposited by Magnetron Sputtering

  • PRODUCTION, STRUCTURE, PROPERTIES
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

The structural, mechanical, and electrophysical properties of Al–B, Al–B–C, and Al–B–Si–C coatings obtained by dual magnetron sputtering of AlB2, SiC, and graphite targets are studied. During deposition, the current applied to the AlB2-containing target (IAlB) is used as a main variable parameter. Deposited coatings are characterized by X-ray diffraction, infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Knoop microhardness tests, and current–voltage characteristic measurements. It is established that all the deposited coatings are X-ray amorphous materials. The FTIR and XPS results show that the B–B, Al–B, B–O, and Al–O bonds are main bonds in all the deposited coatings. Dual sputtering of targets with AlB2 and C, and AlB2 and SiC gives rise to the formation of additional B–C, Si–C, and C–C main bonds in the deposited coatings. It is found the coatings are strengthened with an increase in the IAlB current as a result of increasing the number of B–B and Al–B bonds. The current–voltage characteristics of Al–B and Al–B–C coatings indicate that the coatings are disordered semiconductors in which the hopping conduction mechanism operates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Albert, B. and Hillebrecht, H., Boron: Elementary challenge for experimenters and theoreticians, Angew. Chem., Int. Ed., 2009, vol. 48, pp. 8640–8668.

    Article  CAS  Google Scholar 

  2. Klepper, C.C., Hazelton, R.C., Yadlowsky, E.J., Carlson, E.P., and Keitz, M.D., Amorphous boron coatings produced with vacuum arc deposition technology, J. Vac. Sci. Technol., A, 2002, vol. 20, pp. 725–732.

    Article  CAS  Google Scholar 

  3. Gao, F., Hou, L., and He, Y., Origin of superhardness in icosahedral B12 materials, J. Phys. Chem. B, 2004, vol. 108, pp. 13069–13073.

    Article  CAS  Google Scholar 

  4. Ivashchenko, V.I., Turchi, P.E.A., Veprek, S., Shevchenko, V.I., Leszczynski, J., Gorb, L., and Hill, F., First-principles study of crystalline and amorphous AlMgB14-based materials, J. Appl. Phys., 2016, vol. 119, 205105.

    Article  CAS  Google Scholar 

  5. Dellasega, D., Russo, V., Pezzoli, A., Conti, C., Lecis, N., Besozzi, E., Beghi, M., Bottani, C.E., and Passon, M., Boron films produced by high energy pulsed laser deposition, Mater. Des., 2017, vol. 134, pp. 35–43.

    Article  CAS  Google Scholar 

  6. He, D., Zhao, Y., Daemen, L., Qian, J., Shen, T.D., and Zerda, T.W., Boron suboxide: As hard as cubic boron nitride, Appl. Phys. Lett., 2002, vol. 81, pp. 643–645.

    Article  CAS  Google Scholar 

  7. Aselage, T.L., The coexistence of silicon borides with boron-saturated silicon: Metastability of SiB3, J. Mater. Res., 1998, vol. 13, no. 7, pp. 1786–1794.

    Article  CAS  Google Scholar 

  8. Thevenot, F., Boron carbide—A comprehensive review, J. Eur. Ceram. Soc., 1990, vol. 6, pp. 205–225.

    Article  CAS  Google Scholar 

  9. Singh, M.M., Vijaya, G., Krupashankara, M.S., Sridhara, B.K., and Shridhar, T.N., Deposition and characterization of aluminum thin film coatings using DC magnetron sputtering process, Mater. Today, 2018, vol. 5, pp. 2696–2704.

    Google Scholar 

  10. Shang, H., Ma, B., Shi, K., Li, R., and Li, G., The strengthening effect of boron interstitial supersaturated solid solution on aluminum films, Mater. Lett., 2017, vol. 192, pp. 104–106.

    Article  CAS  Google Scholar 

  11. Prikhna, T.A. and Kisly, P.S., Aluminum borides and carboborides, AIP Conf. Proc., 1991, vol. 231, pp. 590–593.

    Article  CAS  Google Scholar 

  12. Ramnath, B.V., Elanchezhian, C., Jaivignesh, M., Rajesh, S., Parswajinan, C., Siddique, A., and Ghias A., Evaluation of mechanical properties of aluminum alloy–alumina–boron carbide metal matrix composites, Mater. Des., 2014, vol. 58, pp. 332–338.

    Article  CAS  Google Scholar 

  13. Murakami, T. and Inui, H., Friction and wear properties of α-AlB12- and SiB6-based ceramics in water, Tribol. Int., 2014, vol. 74, pp. 38–45.

    Article  CAS  Google Scholar 

  14. Han, Y., Gallant, D., and Chen, X.-G., Investigation on corrosion behavior of the Al–B4C metal matrix composite in a mildly oxidizing aqueous environment, Corrosion, 2011, vol. 67, no. 11, 115005.

    Article  Google Scholar 

  15. Chen, C., Feng, X., and Shen, Y., Synthesis of Al–B4C composite coating on Ti–6Al–4V alloy substrate by mechanical alloying method, Surf. Coat. Technol., 2017, vol. 321, pp. 8–18.

    Article  CAS  Google Scholar 

  16. Wang, X.J., Mori, T., Kuzmych-Ianchuk, I., Michiue, Y., Yubuta, K., Shishido, T., Grin, Y., Okada, S., and Cahill, D.G., Thermal conductivity of layered borides: The effect of building defects on the thermal conductivity of TmAlB4 and the anisotropic thermal conductivity of AlB2, APL Mater., 2014, vol. 2, 046113.

    Article  CAS  Google Scholar 

  17. Hsu, C.-H., Huang, C.-W., Lai, J.-M., Chou, Y.-C., Cho, Y.-S., Zhang, S., Lien, S.-Y., Zhang, X.-Y., and Zhu, W.-Z., Effect of oxygen annealing on spatial atomic layer deposited aluminum oxide/silicon interface and on passivated emitter and rear contact solar cell performance, Thin Solid Films, 2018, vol. 660, pp. 920–925.

    Article  CAS  Google Scholar 

  18. Mizushima, I., Watanabe, M., Murakoshi, A., Hotta, M., Kashiwagi, M., and Yoshiki, M., Hole generation by icosahedral B12 in high-dose boron as-implanted silicon, Appl. Phys. Lett., 1993, vol. 63, pp. 373–375.

    Article  CAS  Google Scholar 

  19. Besling, W.F. A., Goossens, A., Meester, B., and Schoonman, J., Laser-induced chemical vapor deposition of nanostructured silicon carbonitride thin film, J. Appl. Phys., 1998, vol. 83, pp. 544–553.

    Article  CAS  Google Scholar 

  20. Sommer, A., White, D., Linevsky, M.J., and Mann, D.E., Infrared absorption spectra of B2O3, B2O2, and BO2 in solid argon matrices, J. Chem. Phys., 1963, vol. 38, pp. 87–97.

    Article  CAS  Google Scholar 

  21. Ghosh, D., Subhash, G., Lee, C.H., and Yap, Y.K., Strain-induced formation of carbon and boron clusters in boron carbide during dynamic indentation, Appl. Phys. Lett., 2007, vol. 91, 061910.

    Article  CAS  Google Scholar 

  22. Yate, L., Caicedo, J.C., Hurtado Macias, A., Espinoza-Beltrán, F.J., Zambrano, G., Muñoz-Saldaña, J., and Prieto, P., Composition and mechanical properties of AlC, AlN and AlCN thin films obtained by r.f. magnetron sputtering, Surf. Coat. Technol., 2009, vol. 203, pp. 1904–1907.

    Article  CAS  Google Scholar 

  23. Haddadi, S.A., Mahdavian-Ahadi, M., and Abbasi, F., Effect of nanosilica and boron carbide on adhesion strength of high temperature adhesive based on phenolic resin for graphite bonding, Ind. Eng. Chem. Res., 2014, vol. 53, no. 29, pp. 11747–11754.

    Article  CAS  Google Scholar 

  24. Aytimur, A., Koçyiğit, S., Uslu, İ., Durmuşoğlu, Ş., and Akdemir, A., Synthesis and characterization of boron-doped bismuth oxide-erbium oxide fiber derived nanocomposite precursor, J. Compos. Mater., 2013, vol. 48, no. 19, pp. 2317–2324.

    Article  CAS  Google Scholar 

  25. Kozak, A.O., Porada, O.K., Ivashchenko, V.I., Ivashchenko, L.A., Scrynskyy, P.L., Tomila, T.V., and Manzhara, V.S., Comparative investigation of Si–C–N films prepared by plasma enhanced chemical vapour deposition and magnetron sputtering, Appl. Surf. Sci., 2017, vol. 425, pp. 646–653.

    Article  CAS  Google Scholar 

  26. Omoike, A.I. and Vanloon, G.W., Removal of phosphorus and organic matter removal by alum during wastewater treatment, Water Res., 1999, vol. 33, no. 17, pp. 3617–3627.

    Article  CAS  Google Scholar 

  27. Zagrajczuk, B., Dziadek, M., Olejniczak, Z., Sulikowski, B., Cholewa-Kowalska, K., and Laczka, M., Structural investigation of gel-derived materials from the SiO2–Al2O3 system, J. Mol. Struct., 2018, vol. 1167, pp. 23–32.

    Article  CAS  Google Scholar 

  28. Mulligan, A., Dhanak, V., and Kadodwala, M.A., High-resolution photoemission study of nanoscale aluminum oxide films on NiAl(110), Langmuir, 2005, vol. 21, pp. 8312–8318.

    Article  CAS  PubMed  Google Scholar 

  29. Samain, L., Jaworski, A., Edén, M., Ladd, D.M., Seo, D.-K., Javier, G.-G.F., and Häussermann, U., Structural analysis of highly porous γ-Al2O3, J. Solid State Chem., 2014, vol. 217, pp. 1–8.

    Article  CAS  Google Scholar 

  30. Ivashchenko, V.I., Dub, S.N., Scrynskyy, P.L., Kozak, A.O., Gorb, L., Hill, F., and Leszczynski, J., Characterization of Al–Mg–B–C films based on experimental and first-principles investigations, Surf. Coat. Technol., 2017, vol. 309, pp. 164–171.

    Article  CAS  Google Scholar 

  31. Xu, T.T., Zheng, J.-G., Wu, N., Nicholls, A.W., Roth, J. R., Dikin, D.A., and Ruoff, R.S., Crystalline boron nanoribbons: Synthesis characterization, Nano Lett., 2004, vols. 4–5, pp. 963–968.

    Article  CAS  Google Scholar 

  32. Ong, C.-W., Chan, K.-F., Zhao, X.-A., and Choy, C.-L., Physical properties of room temperature deposited B–C–N–O films prepared by dual-ion-beam deposition, Surf. Coat. Technol., 1999, vol. 115, pp. 145–152.

    Article  CAS  Google Scholar 

  33. Baitalik, S., Molla, A.R., and Kayal, N., Non-isothermal oxide bond phase formation kinetics of SiC powder coated with yttrium aluminum garnet (YAG) sol, J. Alloys Compd., 2018, vol. 767, pp. 302–314.

    Article  CAS  Google Scholar 

  34. Zheng, B., Liu, T., Gao, D., Zhu, Q., Li, S., Luo, G., and Gao, X., Preparation and properties of a novel covalently bonded energetic boron powder and its composite, RSC Adv., 2018, vol. 8, pp. 11478–11488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Y. and, Trenary, M., Surface chemistry of boron oxidation. 2. The reactions of boron oxides B2O2 and B2O3 with boron films grown on tantalum(110), Chem. Mater., 1993, vol. 5, pp. 199–205.

    Article  CAS  Google Scholar 

  36. Cimalla, V., Baeumler, M., Kirste1, L., Prescher, M., Christian, B., Passow, T., Benkhelifa, F., Bernhardt, F., Eichapfel, G., Himmerlich, M., Krischok, S., and Pezoldt, J., Densification of thin aluminum oxide films by thermal treatments, Mater. Sci. Appl., 2014, vol. 5, pp. 628–638.

    CAS  Google Scholar 

  37. Hinnen, C., Imbert, D., Siffre, J.M., and Marcus, P., An in situ XPS study of sputter-deposited aluminum thin films on graphite, Appl. Surf. Sci., 1994, vol. 78, pp. 219–231.

    Article  CAS  Google Scholar 

  38. Tian, Z., Xu, C., Li, J., Zhu, G., Wua, J., Shi, Z., and Wang, Y., A facile preparation route for highly conductive borate cross-linked reduced graphene oxide paper, New J. Chem., 2015, vol. 39, pp. 6907–6913.

    Article  CAS  Google Scholar 

  39. Jacobsohn, L.G., Schulze, R.K., Maia da Costa, M.E.H., and Nastasi, M., X-ray photoelectron spectroscopy investigation of boron carbide films deposited by sputtering, Surf. Sci., 2004, vol. 572, pp. 418–424.

    Article  CAS  Google Scholar 

  40. Chen, L., Goto, T., Hirai, T., and Amano, T., State of boron in chemical vapor-deposited SiC–B composite powders, J. Mater. Sci. Lett., 1990, vol. 9, pp. 997–999.

    Article  CAS  Google Scholar 

  41. Tan, M., Zhu, J., Han, J., Gao, W., Niu, L., and Lu, J., Chemical analysis and vibrational properties of boronated tetrahedral amorphous carbon films, Diamond Relat. Mater., 2007, vol. 16, pp. 1739–1745.

    Article  CAS  Google Scholar 

  42. Kao, K.C. and Hwang, W. Electrical Transport in Solids, with Particular Reference to Organic Semiconductors, Oxford: Pergamon, 1981.

    Google Scholar 

  43. Amorphous Semiconductors, Topics Appl. Phys. vol. 36, Brodsky, M.H., Ed., New York: Springer, 1986,

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. O. Kozak or V. I. Ivashchenko.

Additional information

Translated by O. Kadkin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozak, A.O., Ivashchenko, V.I., Scrynskyy, P.L. et al. Structure and Properties of the Al–B–Si–C Coatings Deposited by Magnetron Sputtering. J. Superhard Mater. 42, 311–322 (2020). https://doi.org/10.3103/S1063457620050184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457620050184

Keywords:

Navigation