Skip to main content
Log in

Generation and Characteristics of Glial Cells from Induced Human Pluripotent Stem Cells

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—The technology for producing human induced pluripotent stem cells (iPSCs) and the possibility of directed differentiation into specialized cells of all body tissues have opened unique opportunities for studying the molecular genetic basis of the pathogenesis of neurodegenerative diseases in vitro and effective screening for compounds with neuroprotective activity. The aim of this work was to obtain glial cell cultures from iPSCs of a healthy donor and a patient with the familial form of Parkinson’s disease (G2019S mutation in the LRRK2) and to characterize them. At the first stage, we compared the three previously described protocols for the differentiation of glial cells from neural precursors of human iPSCs and selected the method most acceptable under our conditions in terms of the quality and time necessary for obtaining the desired cultures. Glial cell cultures obtained by this method were characterized by the levels of expression of a number of neuroglial differentiation genes. Also, in the resulting cultures, we analyzed the expression of genes of some neurotrophic factors (GDNF, BDNF, NGF, NT3). It was shown that the culture medium conditioned by glial cells from a patient with Parkinson’s disease had a negative effect on the growth of neurites of dopaminergic neurons in differentiated cultures of a healthy donor, decreasing their length by a factor of 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S., Cell, 2007, vol. 131, pp. 861–872.

    CAS  Google Scholar 

  2. Novosadova, E.V. and Grivennikov, I.A., Usp. Biol. Khim., 2014, vol. 54, pp. 3–38.

    Google Scholar 

  3. Garcia-Leon, J.A., Vitorica, J., and Gutierrez, A., Future Med. Chem, 2019. https://doi.org/10.4155/fmc-2018-0520

  4. Von Bartheld, C.S., Bahney, J., and Herculano-Houzel, S., J. Comp. Neurol., 2016, vol. 524, pp. 3865–3895.

    Article  Google Scholar 

  5. Verkhratsky, A. and Nedergaard, M., Physiol. Rev., 2018, vol. 98, pp. 239–389.

    Article  CAS  Google Scholar 

  6. Molofsky, A.V., Krencik, R., Ullian, E.M., Tsai, H.H., Deneen, B., Richardson, W.D., Barres, B.A., and Rowitch, D.H., Genes Dev., 2012, vol. 26, pp. 891–907.

    Article  CAS  Google Scholar 

  7. Verkhratsky, A., Sofroniew, M.V., Messing, A., Delanerolle, N.C., Rempe, D., Rodriguez, J.J., and Nedergaard, M., ASN Neuro, 2012, vol. 4.

  8. Palpagama, T.H., Waldvogel, H.J., Faull, R.L.M., and Kwakowsky, A., Front. Mol. Neurosci., 2019, vol. 12, p. 258.

  9. Bi, F., Huang, C., Tong, J., Qiu, G., Huang, B., Wu, Q., Li, F., Xu, Z., Bowser, R., Xia, X.G., and Zhou, H., Proc. Natl. Acad. Sci. U.S.A., 2013, vol. 110, pp. 4069–4074.

    Article  CAS  Google Scholar 

  10. di Domenico, A., Carola, G., Calatayud, C., Pons-Espinal, M., Muñoz, J.P., Richaud-Patin, Y., Fernandez-Carasa, I., Gut, M., Faella, A., Parameswaran, J., Soriano, J., Ferrer, I., Tolosa, E., Zorzano, A., Cuervo, A.M., Raya, A., and Consiglio, A., Stem Cell Reports, 2019, vol. 12, pp. 213–229.

    Article  CAS  Google Scholar 

  11. Krencik, R. and Ullian, E.M., Front. Cell. Neurosci., 2013, vol. 7, pp. 1–10. www.frontiersin.org.

    Article  Google Scholar 

  12. Krencik, R., Weick, J.P., Liu, Y., Zhang, Z.J., and Zhang, S.C., Nat. Biotechnol., 2011, vol. 29, pp. 528–534.

    Article  CAS  Google Scholar 

  13. Santos, R., Vadodaria, K.C., Jaeger, B.N., Mei, A., Lefcochilos-Fogelquist, S., Mendes, A.P.D., Erikson, G., Shokhirev, M., Randolph-Moore, L., Fredlender, C., Dave, S., Oefner, R., Fitzpatrick, C., Pena, M., Barron, J.J., Ku, M., Denli, A.M., Kerman, B.E., Charnay, P., Kelsoe, J.R., Marchetto, M.C., and Gage, F.H., Stem Cell Reports, 2017, vol. 8, pp. 1757–1769.

    Article  CAS  Google Scholar 

  14. Ye, ZhangS.A., Sloan, L.E., Clarke, C., Caneda, C.A., Plaza, P.D., Blumenthal, H., Vogel, G.K., Steinberg, M.S.B., Edwards, G., Li, J.A., Duncan, S.H., Cheshier, L.M., Shuer, E.F., Chang, G.A., Grant, M.G., and Gephart, B.A.B., Neuron, 2016, vol. 89, pp. 37–53.

    Article  Google Scholar 

  15. Chen, C., Jiang, P., Xue, H., Peterson, S.E., Tran, H.T., McCann, A.E., Parast, M.M., Li, S., Pleasure, D.E., Laurent, L.C., Loring, J.F., Liu, Y., and Deng, W., Nat. Commun., 2014, vol. 5, p. 4430.

    Article  CAS  Google Scholar 

  16. Shaltouki, A., Peng, J., Liu, Q., Rao, M.S., and Zeng, X., Stem Cells, 2013, vol. 31, pp. 941–952.

    Article  CAS  Google Scholar 

  17. Lundin, A., Delsing, L., Clausen, M., Ricchiuto, P., Sanchez, J., Sabirsh, A., Ding, M., Synnergren, J., Zetterberg, H., Brolen, G., Hicks, R., Herland, A., and Falk, A., Stem Cell Reports, 2018, vol. 10, pp. 1030–1045.

    Article  CAS  Google Scholar 

  18. Mormone, E., D’Sousa, S., Alexeeva, V., Bederson, M.M., and Germano, I.M., Stem Cells and Development, 2014, vol. 23, pp. 2626–2636.

    Article  Google Scholar 

  19. Kim, K., Doi, A., Wen, B., Ng, K., Zhao, R., Cahan, P., Kim, J., Aryee, M.J., Ji, H., Ehrlich, L.I., Yabuuchi, A., Takeuchi, A., Cunniff, K.C., Hongguang, H., McKinney-Freeman, S., Naveiras, O., Yoon, T.J., Irizarry, R.A., Jung, N., Seita, J., Hanna, J., Murakami, P., Jaenisch, R., Weissleder, R., Orkin, S.H., Weissman, I.L., Feinberg, A.P., and Daley, G.Q., Nature, 2010, vol. 467, pp. 285–290.

    Article  CAS  Google Scholar 

  20. Nazor, K.L., Altun, G., Lynch, C., Tran, H., Harness, J.V., Slavin, I., Garitaonandia, I., Müller, F.J., Wang, Y.C., Boscolo, F.S., Fakunle, E., Dumevska, B., Lee, S., Park, H.S., Olee, T., D’Lima, D.D., Semechkin, R., Parast, M.M., Galat, V., Laslett, A.L., Schmidt, U., Keirstead, H.S., Loring, J.F., and Laurent, L.C., Cell Stem Cell, 2012, vol. 10, pp. 620–634.

    Article  CAS  Google Scholar 

  21. Novosadova, E.V., Nekrasov, E.D., Chestkov, I.V., Surdina, A.V., Vasina, E.M., Bogomazova, A.N., Manuilova, E.S., Arsenyeva, E.L., Simonova, V.V., Konovalova, E.V., Fedotova, E.Yu., Abramycheva, N.Yu., Khaspekov, L.G., Grivennikov, I.A., Tarantul, V.Z., Kiselev, S.L., and Illarioshkin, S.N., Sovremennye Tehnologii, 2016, vol. 8, pp. 155–164.

  22. Novosadova, E.V., Arsen’eva, E.L., Manuilova, E.S., Khaspekov, L.G., Bobrov, M.Yu., Bezuglov, V.V., Illarioshkin, S.N., and Grivennikov, I.A., Biokhimiya, 2017, vol. 82, pp. 1732–1739.

  23. Nenasheva, V.V., Novosadova, E.V., Makarova, I.V., Lebedeva, O.S., Grefenshtein, M.A., Arsenyeva, E.L., Antonov, S.A., Grivennikov, I.A., and Tarantul, V.Z., Mol. Neurobiol., 2017, vol. 54, pp. 7204–7211.

    Article  CAS  Google Scholar 

  24. Pöyhönen, S., Er, S., Domanskyi, A., and Airavaara, M., Front. Physiol., 2019, vol. 10, p. 486.

  25. Bothwell, M., F1000Res., 2016, vol. 5, pii: F1000 Faculty Rev-1885. https://doi.org/10.12688/f1000research.8434.1

  26. Ibáñez, C.F. and Andressoo, J.O., Neurobiol. D., 2017, vol. 97 (Pt. B), pp. 80–89.

  27. Nasrolahi, A., Mahmoudi, J., Akbarzadeh, A., Karimipour, M., Sadigh-Eteghad, S., Salehi, R., and Farhoudi, M., Rev. Neurosci., 2018, vol. 29, pp. 475–489.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was performed using the equipment of the Center for Collective Use of the Institute of Molecular Genetics of the Russian Academy of Sciences “Center for Cell and Gene Technologies.”

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 19-29-04080 mk and by the grant of the program of the Presidium of the Russian Academy of Sciences “Basic Research for Biomedical Technologies.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Novosadova or I. A. Grivennikov.

Ethics declarations

Conflict of interest. The authors declare they have no conflict of interest.

Ethical approval. This article does not contain any research involving humans and animals as subjects of study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novosadova, E.V., Arsen’eva, E.L., Antonov, S.A. et al. Generation and Characteristics of Glial Cells from Induced Human Pluripotent Stem Cells. Neurochem. J. 14, 415–423 (2020). https://doi.org/10.1134/S1819712420040066

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1819712420040066

Keywords:

Navigation