Skip to main content
Log in

Activation of Serotonin System in the Medial Prefrontal Cortex by Sound Signals of Danger

  • EXPERIMENTAL ARTICLES
  • Published:
Neurochemical Journal Aims and scope Submit manuscript

Abstract—Intracerebral microdialysis in Sprague-Dawley rats showed that a conditioned sound signal (CS+) previously reinforced by unavoidable electrocutaneous stimulation (fear conditioning test) is accompanied by an increased level of extracellular serotonin in the medial prefrontal cortex and provokes freezing behavior (fear index). A differential sound signal (CS–) not associated with pain stimulation (fear generalization test) also led to an increase in the level of extracellular serotonin in the medial prefrontal cortex but with decreased freezing behavior. These changes were absent in control group animals (same procedures, no electrocutaneus stimulation). Administration of the selective serotonin reuptake inhibitor fluoxetine (1 µmol) in the medial prefrontal cortex increased the elevation of extracellular serotonin levels caused by CS+ and CS–. This pharmacological exposure did not affect the freezing response to CS+ or CS– during the tests, however, it did cause longer periods of immobility between CS+ signals but not CS–. The data show that activation of the serotonin system of the medial prefrontal cortex by potentially threatening conditioned signals, but not neutral differential signals, takes part in the regulation of defensive behavior in the intervals between signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kessler, R.C., Chiu, W.T., Demler, O., and Walters, E.E., Arch. Gen. Psychiatry, 2005, vol. 62, no. 6, pp. 617–627.

    Article  Google Scholar 

  2. Maren, S., Annu. Rev. Neurosci., 2001, vol. 24, pp. 897–931.

    Article  CAS  Google Scholar 

  3. Rozeske, R.R., Valerio, S., Chaudun, F., and Herry, C., Genes Brain Behav., 2015, vol. 14, no. 1, pp. 22–36.

    Article  CAS  Google Scholar 

  4. Saulskaya, N.B, Uspekhi Fiziol. Nauk, 2018, vol. 49, no. 4, pp. 12–29.

  5. Sangha, S., Diehl, M.M., Bergstrom, H.C., and Drew, M.R., Neurosci. Biobehav. Rev., 2020, vol. 108, pp. 218–230.

    Article  Google Scholar 

  6. Puig, M.V., Artigas, F., and Celada, P., Cereb. Cortex, 2005, vol. 15, no. 1, pp. 1–14.

    Article  Google Scholar 

  7. Meunier, C.N., Amar, M., Lanfumey, L., Hamon, M., and Fossier, P., Neuropharmacology, 2013, vol. 71, pp. 37–45.

    Article  CAS  Google Scholar 

  8. Bauer, E.P., Beh. Brain. Res., 2015, vol. 277, pp. 68–77.

    Article  CAS  Google Scholar 

  9. Hashimoto, S., Inoue, T., and Koyama, T., Eur. J. Pharmacol., 1999, vol. 378, no. 1, pp. 23–30.

    Article  CAS  Google Scholar 

  10. Almada, R.C., Coimbra, N.C., and Brandao, M.L., Neuroscience, 2015, vol. 284, no. 11, pp. 988–997.

    Article  CAS  Google Scholar 

  11. Leon, L.A., Castro-Gomes, V., Zarate-Guerrero, S., Corredor, K., Mello Crus, A.P., Brandao, M.L., Cardenas, F.P., and Landreira-Fernandez, J., Front. Behav. Neurosci., 2017, vol. 11, no. 117, pp. 1–13.

    Article  Google Scholar 

  12. Ferreira, R. and Nobre, M.J., Neurosci., 2014, vol. 268, pp. 159–158.

    Article  CAS  Google Scholar 

  13. Sangha, S., Robinson, P.D., and Greba, Q., Neuropsychopharmacology, 2014, vol. 39, pp. 2105–2113.

    Article  Google Scholar 

  14. Grosso, A., Santoni, G., Manassero, E. Renna, A., and Sacchetti, B., Nature Communication, 2018, vol. 9, no. 1, Art. 1214, pp. 1–12.

  15. Rozeske, R.R., Jercog, D., Karalis, N., Chaudun, F., Khoder, S., Girard, D., Winke, N., and Herry, C., Neuron, 2018, vol. 97, no. 4, pp. 898–910.

    Article  CAS  Google Scholar 

  16. Scarlata, M.J., Lee, S.H., Lee, D., Kandigian, S.E., Hiller, A.J., Dishart, J.G., Mintz, G.E., Wang, Z., Coste, G.I., Mousley, A.L., Soler, I., Lawson, K., Ng, A.J., Bezek, J.L., and Bergstrom, H.C., Sci. Report., 2019, vol. 9, Art. 6730.

    Article  CAS  Google Scholar 

  17. Klemenhagen, K.C., Gordon, J.A., David, D.J. Hen, R., and Gross, C.T., Neuropsychopharmacology, 2006, vol. 31, no. 1, pp. 101–111.

    Article  CAS  Google Scholar 

  18. Pedraza, L.K., Sierra, R.O., Giachero, M., Nunes-Souza, W., Lotz, F.N., and de Oliveira Alvares, L., Translational Psychiatry, 2019, vol. 9, no. 1, Art. 53.

    Article  Google Scholar 

  19. Saulskaya, N.B. and Marchuk, O.E., Sechenov Physiology Journal, 2018, vol.108, no. 4, pp. 466–476.

    Google Scholar 

  20. Saul’skaya, N.B. and Marchuk, O.E., Zh. Vyssh. Nerv. Deyat., 2019, vol. 69, no. 3, pp. 342–352.

    Google Scholar 

  21. Saul’skaya, N.B. and Sudorgina, P.V., Zh. Vyssh. Nerv. Deyat., 2015, vol. 65, no. 3, pp. 372–381.

    Google Scholar 

  22. Mork, A., Russel, R.V., de Jong, I.E.M., and Smagin, G., Europ. J. Pharmacol., 2017, vol. 799, pp. 1–6.

    Article  Google Scholar 

  23. Yokoyama, M., Suzuki, E., Sato, N., Maruta, S., Watanabe, S., and Miyaoka, H., Neurosci. Lett., 2004, vol. 379, no. 1, pp. 37–41.

    Article  Google Scholar 

  24. Gilmartin, M.R., Balderston, N.L., and Helmstetter, F.J., Trends Neurosc., 2014, vol. 37, no. 8, pp. 455–464.

    Article  CAS  Google Scholar 

  25. Spigset, O., Drag Saf., 1999, vol. 20, no. 3, pp. 277–287.

    Article  CAS  Google Scholar 

  26. Burghardt, N.S., Bush, D.E., McEwen, B.S., and LeDoux, J.E., Biol. Psychiatry, 2007, vol. 62, no. 10, pp. 1111–1118.

    Article  CAS  Google Scholar 

Download references

Funding

This study was partly supported by the Russian Foundation for Basic Research (grant no. 16-04-00449) and the Program of Fundamental Scientific Research for State Academies, 2013–2020 (GP-14, section 63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Saul’skaya.

Ethics declarations

Conflict of interest. The authors declare no conflict of interest.

Ethical approval. The experiments were performed in accordance with international guidelines on the humane treatment of laboratory animals (Council Directive 86/609/EEC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saul’skaya, N.B., Marchuk, O.E., Puzanova, M.A. et al. Activation of Serotonin System in the Medial Prefrontal Cortex by Sound Signals of Danger. Neurochem. J. 14, 408–414 (2020). https://doi.org/10.1134/S181971242004008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S181971242004008X

Keywords:

Navigation