Skip to main content
Log in

Synthesis of Bi5O7I Nanoplates by PVP-Assisted Hydrothermal Method and Their Photocatalytic Activities

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bi5O7I nanoplates as visible-light-driven photocatalyst have been synthesized by PVP assisted hydrothermal method. The effect of weight content of PVP adding on phase, morphology, and photocatalytic activities of products has been studied. The products have been characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). In this research, the products have been specified as pure phase of orthorhombic Bi5O7I structure. The size of Bi5O7I plates has been controlled by the weight content of PVP adding. Photocatalytic activities of the samples have been investigated through photodegradation of methylene blue (MB) under visible light irradiation. The Bi5O7I nanoplates synthesized in the solution containing 0.50 g PVP show the highest photocatalytic activity for degradation of MB under visible light. A mechanism for photodegradation of MB by Bi5O7I is explained according to experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. Fujishima and K. Honda, Nature 238, 37 (1972). https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  2. J. Yang, L. Xu, C. Liu, et al., Appl. Surf. Sci. 319, 265 (2014). https://doi.org/10.1016/j.apsusc.2014.07.055

    Article  CAS  Google Scholar 

  3. A. Habibi-Yangjeh and M. Shekofteh-Gohari, Progress Nat. Sci.: Mater. Inter. 29, 145 (2019). https://doi.org/10.1016/j.pnsc.2019.03.003

    Article  CAS  Google Scholar 

  4. E. Luévano-Hipólito, L. M. Torres-Martínez, and L. V. F. Cantú-Castro, Constr. Build. Mater. 220, 206 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.030

    Article  CAS  Google Scholar 

  5. J. Jiang, P. Zhao, L. Shi, et al., J. Colloid Interf. Sci. 518, 102 (2018). https://doi.org/10.1016/j.jcis.2018.01.097

    Article  CAS  Google Scholar 

  6. R. Fagan, D. E. McCormack, D. D. Dionysiou, et al., Mater. Sci. Semicond. Pro. 42, 2 (2016). https://doi.org/10.1016/j.mssp.2015.07.052

    Article  CAS  Google Scholar 

  7. R. Vinoth, S. G. Babu, R. Ramachandran, et al., Appl. Surf. Sci. 418, 163 (2017). https://doi.org/10.1016/j.apsusc.2017.01.278

    Article  CAS  Google Scholar 

  8. J. Hu, S. Weng, Z. Zheng, et al., J. Hazard. Mater. 264, 293 (2014). https://doi.org/10.1016/j.jhazmat.2013.11.027

    Article  CAS  PubMed  Google Scholar 

  9. J. Cao, X. Li, H. Lin, et al., Mater. Lett. 76, 181 (2012). https://doi.org/10.1016/j.matlet.2012.02.087

    Article  CAS  Google Scholar 

  10. X. Li, T. Chen, H. Lin, et al., Sci. Bull. 63, 219 (2018). https://doi.org/10.1016/j.scib.2017.12.016

    Article  CAS  Google Scholar 

  11. Q. Liu, Y. Lu, S. Lin, et al., Colloid. Surf. A 594, 124642 (2020). https://doi.org/10.1016/j.colsurfa.2020.124642

    Article  CAS  Google Scholar 

  12. H. Cheng, J. Wu, Q. Liu, et al., Mater. Lett. 252, 252 (2019). https://doi.org/10.1016/j.matlet.2019.06.001

    Article  CAS  Google Scholar 

  13. Powder Diffraction File (JCPDS-ICDD, 2001).

  14. Z. Zhao, M. Wang, T. Yang, et al., J. Mol. Catal. A 424, 8 (2016). https://doi.org/10.1016/j.molcata.2016.08.004

    Article  CAS  Google Scholar 

  15. C. Liu, H. Huang, X. Du, et al., J. Phys. Chem. C 119, 17156 (2015). https://doi.org/10.1021/acs.jpcc.5b03707

    Article  CAS  Google Scholar 

  16. X. Gao, K. Gao, F. Fu, et al., Appl. Catal. B 265, 118562 (2020). https://doi.org/10.1016/j.apcatb.2019.118562

    Article  CAS  Google Scholar 

  17. Q. Liu, Y. Lu, S. Lin, et al., Colloid. Surf. A 594, 124642 (2020). https://doi.org/10.1016/j.colsurfa.2020.124642

    Article  CAS  Google Scholar 

  18. S. Yin, R. Chen, M. Ji, et al., J. Colloid Interf. Sci. 560, 475 (2020). https://doi.org/10.1016/j.jcis.2019.10.081

    Article  CAS  Google Scholar 

  19. S. Kaushal, H. Kaur, S. Kumar, et al., Russ. J. Inorg. Chem. 65, 616 (2020). https://doi.org/10.1134/S0036023620040087

    Article  CAS  Google Scholar 

  20. S. Jonjana, A. Phuruangrat, T. Thongtem, et al., Mater. Lett. 172, 11 (2016). https://doi.org/10.1016/j.matlet.2016.02.125

    Article  CAS  Google Scholar 

  21. A. Phuruangrat, A. Maneechote, P. Dumrongrojthanath, et al., Superlatt. Microstruct. 78, 106 (2015). https://doi.org/10.1016/j.spmi.2014.11.038

    Article  CAS  Google Scholar 

  22. Zhang, L., Yan, F., Su, M., et al., Russ. J. Inorg. Chem. 54, 1210 (2009). https://doi.org/10.1134/S0036023609080075

    Article  Google Scholar 

  23. S. Sa-nguanprang, A. Phuruangrat, T. Thongtem, et al., Russ. J. Inorg. Chem. 64, 1600 (2019). https://doi.org/10.1134/S0036023619120143

    Article  CAS  Google Scholar 

  24. L. Arfaoui, F. Janene, S. Kouass, et al., Russ. J. Inorg. Chem. 64, 1687 (2019). https://doi.org/10.1134/S0036023619130060

    Article  CAS  Google Scholar 

  25. A. Abulizi, L. Zhou, K. Kadeer, et al., Mater. Sci. Semicond. Process. 86, 69 (2018). https://doi.org/10.1016/j.mssp.2018.06.026

    Article  CAS  Google Scholar 

  26. Y. Chen, B. Y. Zhai, Y. N. Liang, et al., Mater. Sci. Semicond. Process. 107, 104838 (2020). https://doi.org/10.1016/j.mssp.2019.104838

    Article  CAS  Google Scholar 

  27. A. Phuruangrat, P. Keereesaensuk, K. Karthik, et al., J. Inorg. Organomet. Polym. Mater. 30, 322 (2020). https://doi.org/10.1007/s10904-019-01190-4

    Article  CAS  Google Scholar 

Download references

Funding

The research was financially supported through Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand, and Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anukorn Phuruangrat or Titipun Thongtem.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anukorn Phuruangrat, Thongtem, S. & Thongtem, T. Synthesis of Bi5O7I Nanoplates by PVP-Assisted Hydrothermal Method and Their Photocatalytic Activities. Russ. J. Inorg. Chem. 65, 1935–1942 (2020). https://doi.org/10.1134/S0036023620120128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620120128

Keywords:

Navigation