Skip to main content
Log in

Volumetric Properties and Ion Interactions for Sodium Hypophosphite Aqueous Solution from 283.15 to 363.15 K at 101.325 kPa

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Densities of sodium hypophosphite aqueous solution (NaH2PO2) with the molality varied from 1.019143 to 10.43887 mol kg–1 at temperature intervals of 5 K range from 283.15 to 363.15 K at 101.325 kPa were measured by a precise Anton Paar Digital vibrating-tube densimeter. From the density data, the thermal expansion coefficients, apparent volume and partial molar volumes were obtained. According to the Pitzer ion-interaction equation of the apparent molar volumes, the Pitzer single-salt parameters and their temperature-dependent correlation for NaH2PO2 were firstly obtained by the least-squares method. The model shown that apparent molar volumes agree well with the experimental values, which indicated the single salt parameters and the temperature-dependent formula are reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. G. Maged., J. Mol. Catal. A: Chem. 248, 175 (2006). https://doi.org/10.1016/j.molcata.2005.12.014

    Article  CAS  Google Scholar 

  2. D. Ma, J. Zhao, R. Chu, et al., Adv. Powder Technol. 24, 79 (2013). https://doi.org/10.1016/j.apt.2012.02.004

    Article  CAS  Google Scholar 

  3. X. Qiu, Z. Li, X. Li, et al., Chem. Eng. J. 334, 108 (2018). https://doi.org/10.1016/j.cej.2017.09.194

    Article  CAS  Google Scholar 

  4. F. M. Lessan, M. Montazer, and B. Moghadam, Thermochim. Acta 520, 48 (2011). https://doi.org/10.1016/j.tca.2011.03.012

    Article  CAS  Google Scholar 

  5. C. Yujiao, Y. Gang, H. Bonian, et al., Powder Technol. 25, 477 (2014). https://doi.org/10.1016/j.apt.2013.07.003

    Article  CAS  Google Scholar 

  6. X. Gan, K. Zhou, W. Hu, et al., Surf. Coat. Technol. 206, 3405 (2012). https://doi.org/10.1016/j.surfcoat.2012.02.006

    Article  CAS  Google Scholar 

  7. E. Ravi and E. P. Brian, Mater. Lett. 76, 36 (2012). https://doi.org/10.1016/j.matlet.2012.02.049

    Article  CAS  Google Scholar 

  8. A. Nazari, M. Montazer, A. Rashidi, et al., Appl. Catal., A: Gen. 371, 10 (2009). https://doi.org/10.1016/j.apcata.2009.08.029

    Article  CAS  Google Scholar 

  9. Y. Xian, X. Guo, X. Hou, et al., J. Chromatogr. A 1526, 31 (2017). https://doi.org/10.1016/j.chroma.2017.10.047

    Article  CAS  PubMed  Google Scholar 

  10. S. Hashemikia and M. Montazer, Appl. Catal., A: Gen. 417418, 200 (2012). https://doi.org/10.1016/j.apcata.2011.12.041

  11. C. S. Gong. Technology and Application of Advanced Phosphorus. Chemical Engineering (Chemical Industry Press, Beijing, 2013).

    Google Scholar 

  12. L. Tovazhnyansky, P. Kapustenko, L. Ulyiev, et al., Appl. Therm. Eng. 30, 2306 (2010). https://doi.org/10.1016/j.applthermaleng.2010.04.021

    Article  CAS  Google Scholar 

  13. N. Pittayagorn and D. Chanaiporn, Spectrochim. Acta, Part A 77, 890 (2010). https://doi.org/10.1016/j.saa.2010.08.028

    Article  CAS  Google Scholar 

  14. V. Alisoglu and H. Necefoglu, C. R. Acad. Sci. Paris. Ser. IIb, 324, 139 (1997). https://doi.org/10.1016/S1251-8069(99)80017-7

    Article  CAS  Google Scholar 

  15. V. Adiguzel, H. Erge, V. Alisoglu, et al., J. Chem. Thermodyn. 75, 35 (2014). https://doi.org/10.1016/j.jct.2014.04.014

    Article  CAS  Google Scholar 

  16. J. R. Van Vazer, Encyclopedia of Chemical Technology (Interscience, New York, 1953).

    Google Scholar 

  17. W. E. Estes, US Patent 4521391 (1985).

  18. P. Seferlis, J. Klemes, I. Bulatov, et al., Proceedings of the 9th Conference on Process Integration, Modelling and Optimization for Energy Saving and Pollution Reduction-PRES2006/CHISA (Prague, 2006), Vol. 4 [Open Access]

  19. A. I. Papadopoulosa and P. Seferlisa, Chem. Eng. Process. 48, 493 (2009). https://doi.org/10.1016/j.cep.2008.06.011

    Article  CAS  Google Scholar 

  20. M. M. Monica, M. M. Ivey, M.E. Lee, et al., J. Chromatogr. A 1039, 105 (2004). https://doi.org/10.1016/j.chroma.2003.11.056

    Article  CAS  Google Scholar 

  21. The Chemical Industry Standard of China HG/T3253: Sodium Hypophosphite (2000).

  22. K. Sun, P. Li, L. Li, et al., J. Chem. Thermodynamics 140, 105895 (2020). https://doi.org/10.1016/j.jct.2019.105895

    Article  CAS  Google Scholar 

  23. J. A. Dean, Lange’s Handbook of Chemistry (Science, Beijing, 1991).

    Google Scholar 

  24. R. K. Ameta, M. Singh, R. K. Kale, et al., J. Chem. Thermodyn. 60, 159 (2013). https://doi.org/10.1016/j.jct.2013.01.012

    Article  CAS  Google Scholar 

  25. W. G. Xu, Y. Qin, F. Gao, et al., J. Ind. Eng. Chem. Res. 53, 7217-7223 (2014). https://doi.org/10.1021/ie402040h

    Article  CAS  Google Scholar 

  26. S. K. Lomesh, V. Nathan, M. Bala, and P. Thakur, J. Mol. Liq. 284, 241 (2019). https://doi.org/10.1016/j.molliq.2019.04.006

    Article  CAS  Google Scholar 

  27. S. Mondal, S. S. Dhondge, L. J. Pailwal, et al., J. Chem. Thermodyn. 90, 147 (2015). https://doi.org/10.1016/j.jct.2015.06.025

    Article  CAS  Google Scholar 

  28. H. W. Gea, H. J. Yanga, J. I Lia, et al., Russ. J. Inorg. Chem. 65, 222 (2020).  https://doi.org/10.1134/S0036023620020059

  29. H. Bin, H. Lubomir, and H. Glenn, J. Chem. Eng. Data 61, 3618 (2016). https://doi.org/10.1021/acs.jced.6b00519.

  30. Y. Marcus and H.T. Glenn, Chem. Rev. 106, 4585 (2006). https://doi.org/10.1021/cr040087x

    Article  CAS  PubMed  Google Scholar 

  31. C. Akilan, H. T. Glenn, N. Rohman, et al., J. Phys. Chem. B 110, 14961 (2006). https://doi.org/10.1021/jp0620769

    Article  CAS  PubMed  Google Scholar 

  32. S. Rahmat and P. Hana, J. Chem. Thermodyn. 265, 173 (2008). https://doi.org/10.1016/j.fluid.2008.01.004

    Article  CAS  Google Scholar 

  33. H. R. Rafiee and F. Frouzesh, J. Chem. Thermodyn. 102 (2016) 95. https://doi.org/10.1016/j.jct.2016.07.003

    Article  CAS  Google Scholar 

  34. S. Rahmat and P. Hana, J. Chem. Thermodyn. 40, 1012 (2008). https://doi.org/10.1016/j.jct.2008.01.018

    Article  CAS  Google Scholar 

  35. H. Bin, H. Lubomir, L. Wu, and H. Glenn, J. Chem. Eng. Data. 61, 1388 (2016). https://doi.org/10.1021/acs.jced.5b00535

  36. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973) [Open Access].

    Article  CAS  Google Scholar 

  37. Z. Denis, D. Thomas, and S.V. Carmen, J. Chem. Eng. Data 60, 1181 (2015). https://doi.org/10.1021/je501152a

  38. D. P. Fernandez, A. R. H. Goodwin, E. W. Lemmon, et al., J. Phys. Chem. Ref. Data 26, 1125−1166 (1997). https://doi.org/10.1063/1.555997

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial supports from the National Natural Science of China (U1607123 and 21773170), the Key Projects of Natural Science Foundation of Tianjin (18JCZDJC10040) and the Yangtze Scholars and Innovative Research Team in Chinese University (IRT_17R81) are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianlong Deng.

Ethics declarations

The authors declare no competing financial interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Umarbek Alimov, Zhao, K., Guo, Y. et al. Volumetric Properties and Ion Interactions for Sodium Hypophosphite Aqueous Solution from 283.15 to 363.15 K at 101.325 kPa. Russ. J. Inorg. Chem. 65, 1913–1921 (2020). https://doi.org/10.1134/S0036023620120025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620120025

Keywords:

Navigation