Skip to main content
Log in

Optimization of CO Oxidation Catalysts for Thermocatalytic and Semiconducting Gas Sensors

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Kinetics of catalytic CO oxidation on the surface of metal oxide catalysts decorated with noble metals used as gas-sensing materials for sensors has been studied. The majority of oxide materials (SnO2, Al2O3, zeolite, etc.) decorated with palladium and rhodium shows kinetic features resulting in ambiguous sensor response. Exception is CeO2/ZrO2 decorated with palladium: oxidation rate on this catalyst has a unique dependence on CO concentration. The processes of CO oxidation on inert and chemically reactive supports are described in the context of unified kinetic model. There are two modes of catalyst behavior: below and above a certain concentration threshold, the reaction in each mode has first kinetic order toward CO, while the superposition of these processes can result in efficient “minus one” order of oxidation reaction. The transition of catalyst from one state to another occurs as phase transition observed on change in CO concentration but not catalysts temperature. Oxidation kinetics for each state is described by a small set of parameters characteristic for each catalyst, activation energy for each catalyst is the same at all CO and oxygen concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. Langmuir, Trans. Faraday Soc. 17, 621 (1922).

    Article  Google Scholar 

  2. C. Hinshelwood and G. Grant, Nature 131, 361 (1933).

    Article  CAS  Google Scholar 

  3. E. K. Rideal, Math. Proc. Cambridge Philos. Soc. 35, 130 (1939).

    Article  CAS  Google Scholar 

  4. V. F. Malakhov, V.A. Shmachkov, V. Yu. Vasil’ev, and A. M. Kolchin, Kinet. Katal. 18, 572 (1977).

    Google Scholar 

  5. G. Ertl, J. Chem. Phys. 69, 1267 (1978).

    Article  Google Scholar 

  6. J. E. Turner, B. C. Sales, and M. B. Maple, Surf. Sci. 109, 591 (1981).

    Article  CAS  Google Scholar 

  7. J. E. Turner, B. C. Sales, and M. B. Maple, Surf. Sci. 103, 54 (1981).

    Article  CAS  Google Scholar 

  8. P. Mars and D. W. van Krevelen, Chem. Eng. Sci. 3, 41 (1954).

    Article  CAS  Google Scholar 

  9. R. Imbihl and G. Ertl, Chem. Rev. 95, 697 (1995).

    Article  CAS  Google Scholar 

  10. V. D. Belyaev, M. M Slin’ko., V. I. Timoshenko, and M. G. Slin’ko, Kinet. Katal. 14, 810 (1973).

    CAS  Google Scholar 

  11. M. M. Slinko and N. I. Jaeger, Oscillatory Heterogeneous Catalytic Systems, Studies in Surface Science and Catalysis (Elsevier, Amsterdam, 1994), Vol. 86.

    Google Scholar 

  12. G. Ertl, Adv. Catal. 37, 213 (1990).

    CAS  Google Scholar 

  13. A. K. Datye, J. Bravo, T. R. Nelson, et al., Appl. Catal., A 198, 179 (2000).

  14. S. Colussi, A. Trovarelli, E. Vesselli, et al., Appl. Catal., A 390, 1 (2010).

  15. R. Raj, M. P. Harold, and V. Balakotaiah, Chem. Eng. J. 281, 322 (2016).

    Article  Google Scholar 

  16. N. M. Kinnunena, J. T. Hirvia, and K. Kallin, Appl. Catal., B 207, 114 (2017).

    Article  Google Scholar 

  17. S. A. Yashnik, Z. S. Vinokurov, A. V. Sal’nikov, et al., Kinet. Katal. 59, 92 (2018).

    Article  Google Scholar 

  18. T. Chakrabarty, P. L. Silveston, and R. R. Hudgins, Can. Soc. Chem. Eng. 62, 651 (1984).

    Article  CAS  Google Scholar 

  19. S. M. Lang, I. Fleischer, T. M. Bernhardt, et al., ACS Catal. 5, 2275 (2015).

    Article  CAS  Google Scholar 

  20. J. C. Calderón, M. R. Ráfales, M. N. Nieto-Monge, et al., Nanomaterials (Basel) 6, 187 (2016).

    Article  Google Scholar 

  21. Pakharukov I. Yu., Bekk I. E., Matrosova M. M., et al. Dokl. Phys. Chem. 439, 211 (2011).

    Article  Google Scholar 

  22. A. A. Shutilov, G. A. Zenkovets, I. Yu. Pakharukov, and I. P. Prosvirin, Kinet. Katal. 55, 11 (2014).

    Google Scholar 

  23. M. Berdau, G. G. Yelenin, A. Karpowicz, et al., J. Chem. Phys. 110, 11551 (1999).

    Article  CAS  Google Scholar 

  24. A. D. Allian, K. Takanabe, K. L. Fujdala, et al., J. Am. Chem. Soc. 133, 4498 (2011).

    Article  CAS  Google Scholar 

  25. G. M. Buendia, E. Machado, and P. A. Rikvold, J. Chem. Phys. 131, 184704 (2009).

    Article  CAS  Google Scholar 

  26. M. Lyubovsky, L. L. Smith, M. Castaldi, et al., Catal. Today 83, 71 (2003).

    Article  CAS  Google Scholar 

  27. L. E. Chernova, I. I. Mitrichev, A. V. Zhensa, and E. M. Kol’tsova, Usp. Khim. Khim. Tekh. 31 (8), 51 (2017).

  28. A. L. Bugaev, O. A. Usoltsev, A. A. Guda, et al., J. Phys. Chem. 122, 12029 (2018). https://doi.org/10.1021/acs.jpcc.7b11473

    Article  CAS  Google Scholar 

  29. R. M. Al Soubaihi, K. M. Saoud, and J. Dutta, Catalysts 8, 660 (2018). https://doi.org/10.3390/catal8120660

    Article  CAS  Google Scholar 

  30. A. A. Vasil’ev, Physicochemical Principles of Designing Gas Sensors Based on Metal Oxides and Metal/Solid Electrolyte/Semiconductor Structures, Doctoral Dissertation in Engineering (Moscow, 2004).

  31. J. H. Kim, J. S. Sung, Yu. M. Son, et al., Sen. Actuators, B 44, 452 (1997).

  32. S. Atsushi, O Kaoru., Y. Masatoshi, et al. Catal. Today 258, 83 (2015).

    Article  Google Scholar 

  33. Bin Feng, Wei Xaolin, and San Hui Kwan, Appl. Catal., B 162, 282 (2015).

    Article  Google Scholar 

  34. T. L. Simonenko, N. P. Simonenko, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1475 (2019).

    Article  CAS  Google Scholar 

  35. V. V. Bugaenko and R. N. Pshenichnyi, Russ. J. Inorg. Chem. 63, 169 (2019).

    Article  Google Scholar 

  36. R. B. Ugryumov, A. V. Shaposhnik, V. S. Voishchev, et al., in Proceedings of the International Workshop on Noise and Degradation Processes in Semiconducting Devices, Moscow, Russia, 2002 (MNTORES im. A.S. Po-pova, MEI, 2003), p. 97.

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-24128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Vasiliev.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasiliev, A.A., Lagutin, A.S. & Nabiev, S.S. Optimization of CO Oxidation Catalysts for Thermocatalytic and Semiconducting Gas Sensors. Russ. J. Inorg. Chem. 65, 1948–1957 (2020). https://doi.org/10.1134/S0036023620120190

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620120190

Keywords:

Navigation