Skip to main content
Log in

Electrochemical Deposition of Zinc-Based Composite Coatings Modified with Carbon Nanotubes from Alkaline Electrolyte

  • NANOSCALE AND NANOSTRUCTURED MATERIALS AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Composite electrochemical coatings (CECs) based on zinc, modified with carbon nanotubes (CNTs) from an alkaline electrolyte in a pulsed electrolysis mode have been obtained. The microstructure and tribological properties of these CECs are investigated. It was found that the introduction of the dispersed CNT phase into the alkaline galvanizing electrolyte reduces the sliding friction coefficient of the forming coatings by a factor of 1.30–1.45. The corrosion–electrochemical behavior of zinc–CNT CECs in 0.5 M solution of H2SO4 has been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Antropov, L.I. and Lebedinskii, Yu.N., Kompozitsionnye elektrokhimicheskie pokrytiya i materialy (Composite Electrochemical Coatings and Materials), Kiev: Tekhnika, 1986.

  2. Saifullin, R.S., Fizikokhimiya neorganicheskikh polimernykh i kompozitsionnykh materialov (Physical Chemistry of Inorganic Polymer and Composite Materials), Moscow: Khimiya, 1990.

  3. Okulov, V.V., Tsinkovanie. Tekhnika i tekhnologiya (Zinc Coating. Techniques and Technology), Moscow: Globus, 2008.

  4. Ranganatha, S., Venkatesha, T.V., Vathsala, K., and Punith kumar, M.K., Surf. Coat. Technol., 2012, vol. 208, pp. 64–72.

    Article  CAS  Google Scholar 

  5. Nemes, P.I., Lekka, M., Fedrizzi, L., and Muresan, L.M., Surf. Coat. Technol., 2014, vol. 252, pp. 102–107.

    Article  CAS  Google Scholar 

  6. Tseluikin, V.N. and Koreshkova, A.A., Russ. J. Appl. Chem., 2014, vol. 87, no. 9, pp. 1251–1253.

    Article  CAS  Google Scholar 

  7. Tseluikin, V.N. and Koreshkova, A.A., Russ. J. Appl. Chem., 2015, vol. 88, no. 2, pp. 272–274.

    Article  CAS  Google Scholar 

  8. Rekha, M.Y., Kamboj, A., and Srivastava, C., Thin Solid Films, 2017, vol. 636, pp. 593–601.

    Article  CAS  Google Scholar 

  9. Musikhina, T.A., Zemtsova, E.A., and Fuks, C.L., IOP Conf. Ser.: Mater. Sci. Eng., 2017, vol. 262, p. 012010.

  10. Perevalov, V.P., Vinokurov, E.G., Zuev, K.V., Vasilenko, E.A., and Tsivadze, A.Yu., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 2, pp. 199–214.

    Article  CAS  Google Scholar 

  11. Boshkov, N., Port. Electrochim. Acta, 2017, vol. 35, p. 53.

    Article  CAS  Google Scholar 

  12. Al-Dhire, T.M., Zuhailawati, H., and Anasyida, A.S., J. Phys.: Conf. Ser., 2018, vol. 1082, p. 012064.

    Google Scholar 

  13. Peshova, M., Bachvarov, V., Vitkova, St., Atanasova, G., and Boshkov, N., Trans. IMF, 2018, vol. 96, no. 6, pp. 324–331.

    Article  CAS  Google Scholar 

  14. Kazimierczak, H., Szymkiewicz, K., Bobrowski, P., Swiatek, Z., Rogal, L., Gileadi, E., and Eliaz, N., J. Electrochem. Soc., 2018, vol. 165, pp. 774–782.

    Article  Google Scholar 

  15. Bin Yang, Pengfei Zhang, Guangxin Wang, Aiqin Wang, Xiaofang Chen, Shizhong Wei, and Jingpei Xie, Coatings, 2019, vol. 9, p. 758.

    Article  CAS  Google Scholar 

  16. Rekha, M.Y. and Srivastava, C., Corros. Sci., 2019, vol. 152, pp. 243–248.

    Google Scholar 

  17. Punith Kumar, M.K., Rekha, M.Y., Agrawal, J., Agarwal, T.M., and Srivastava, C., J. Alloys Compd., 2019, vol. 783, pp. 820–827.

    Article  CAS  Google Scholar 

  18. Tseluikin, V.N. and Koreshkova, A.A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 3, pp. 453–456.

    Article  CAS  Google Scholar 

  19. Tseluikin, V.N. and Koreshkova, A.A., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, pp. 1047–1049.

    Article  CAS  Google Scholar 

  20. Kirikova, D.I., Kireeva, S.N., Kireev, S.Yu., and Perelygin, Yu.P., Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 3, pp. 32–38.

    Google Scholar 

  21. Kruglikov, S.S., Nekrasova, N.E., Kasatkin, V.E., and Kornilova, S.I., Gal’vanotekh. Obrab. Poverkhn., 2016, vol. 24, no. 4, pp. 30–38.

    Google Scholar 

  22. Nikitin, V.S., Ostanina, T.N., and Rudoi, V.M., Russ. J. Electrochem., 2018, vol. 54, no. 9, pp. 665–671.

    Article  CAS  Google Scholar 

  23. Tao, S. and Li, D.Y., Nanotechnology, 2006, vol. 17, p. 65.

    Article  CAS  Google Scholar 

  24. Chang, L.M., Chen, D., Liu, J.H., and Zhang, R.J., J. Alloys Compd., 2009, vol. 479, p. 489.

    Article  CAS  Google Scholar 

  25. Saifullin, R.S. and Abdullin, I.A., Ross. Khim. Zh., 1999, vol. 63, nos. 3–4, pp. 63–67.

    Google Scholar 

Download references

Funding

This study was carried out with the financial support of the Russian Foundation for Basic Research within the framework of scientific project no. 18-29-19048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Tseluikin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tseluikin, V.N., Strilets, A.A. & Yakovlev, A.V. Electrochemical Deposition of Zinc-Based Composite Coatings Modified with Carbon Nanotubes from Alkaline Electrolyte. Prot Met Phys Chem Surf 56, 1186–1189 (2020). https://doi.org/10.1134/S2070205120060246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120060246

Navigation