Skip to main content
Log in

Carbon Nanoporous Adsorbents Prepared from Walnut Shell for Liquefied Natural Gas Vapor Recovery in Cryogenic Storage Systems

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract—

A one-step notion of synthesis was developed to prepare microporous activated carbons from walnut shell by physical gas activation in a CO2 atmosphere for a low-temperature methane accumulation system operating at 120, 160, and 178 K. The raw material was carbonized within a temperature range from 240 to 950°C. Temperatures close to 900°С were found to be optimal for the development of microporosity in the adsorbent in a CO2 atmosphere. Activation under these conditions made it possible to achieve a burnoff degree up to 70% and form an optimal porous structure for adsorption accumulation of liquefied natural gas (LNG) vapors. The adsorbent thus obtained exhibits a high micropore volume W0 = 0.59 cm3/g, mesopore volume WМЕ = 0.33 cm3/g, specific surface SBET = 1490 m2/g, and half-width of micropores of 0.59 nm, which provided a high methane adsorption capacity. The presence of mesopores can make additional contribution to the adsorption process due to capillary condensation. The theoretical assessment of the methane adsorption capacity of the adsorbent showed that at temperatures of 120, 160, and 178 K and pressures up to 6 bars, the values of equilibrium adsorption were 15, 13.5, and 12 mmol/g, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Y., Shkolin, A.V., Strizhenov, E.M., and Khozina, E.V., Adsorption, 2017, vol. 23, pp. 327–339.

    Article  Google Scholar 

  2. Fenelonov, V.B., Poristyi uglerod (Porous Carbon), Novosibirsk: Boreskov Institute of Catalysis, Siberian Branch Russ. Acad. Sci., 1995.

  3. Agroinvestor. https://www.agroinvestor.ru/markets/news/30896-dolya-rossii-v-mirovomsbore-orekhov-ne-prevyshaet-1/.

  4. Jin-Wha Kim, Myoung-Hoi Sohn, Dong-Su Kim, Seung-Man Sohn, and Young-Shik Kwon, J. Hazard. Mater., 2001, vol. 85, pp. 301–315.

    Article  CAS  Google Scholar 

  5. Wartelle, L.H. and Marshall, W.E., J. Chem. Technol. Biotechnol., 2001, vol. 76, pp. 451–455.

    Article  CAS  Google Scholar 

  6. Lupascu, T., Dranca, I., Popa, V.T., and Vass, M., J. Therm. Anal. Calorim., 2001, vol. 63, pp. 855–863.

    Article  CAS  Google Scholar 

  7. Gómez-Serrano, V., Cuerda-Correa, E.M., Fernández-González, M.C., Alexandre-Franco, M.F., and Macias-Garcia, A., Smart Mater. Struct., 2005, vol. 14, pp. 363–368.

    Article  Google Scholar 

  8. Martínez, M.L., Torres, M.M., Guzmán, C.A., and Maestri, D.M., Ind. Crops Prod., 2006, vol. 23, pp. 23–28.

    Article  Google Scholar 

  9. Kambarova, G.B. and Sarymsakov, Sh., Solid Fuel Chem., 2008, vol. 42, pp. 183–186.

    Article  Google Scholar 

  10. González, J.F., Román, S., González-Garcia, C.M., Nabais, J.M.V., and Ortiz, A.L., Ind. Eng. Chem. Res., 2009, vol. 48, pp. 7474–7481.

    Article  Google Scholar 

  11. Nowicki, P., Pietrzak, R., and Wachowska, H., Catal. Today, 2010, vol. 150, pp. 107–114.

    Article  CAS  Google Scholar 

  12. Juan Yang and Keqiang Qiu, Chem. Eng. J., 2010, vol. 165, pp. 209–217.

    Article  CAS  Google Scholar 

  13. Zabihi, M., Haghighi Asl, A., and Ahmadpour, A., J. Hazard. Mater., 2010, vol. 174, pp. 251–256.

    Article  CAS  Google Scholar 

  14. Wookeun Bae, Jongho Kim, and Jinwook Chung, J. Air Waste Manage. Assoc., 2014, vol. 64, pp. 879–886.

    Article  CAS  Google Scholar 

  15. Qiongfen Yu, Ming Li, Ping Ning, Honghong Yi, and Xiaolong Tang, Sep. Sci. Technol., 2014, vol. 49, pp. 2366–2375.

    Article  CAS  Google Scholar 

  16. Men’shchikov, I.E., Fomkin, A.A., Shkolin, A.V., Yakovlev, V.Y., and Khozina, E.V., Russ. Chem. Bull., 2018, vol. 67, pp. 1814–1822.

    Article  Google Scholar 

  17. Chugaev, S.S., Fomkin, A.A., Men’shchikov, I.E., Strizhenov, E.M., and Shkolin, A.V., Prot. Met. Phys. Chem. Surf., 2020, vol. 56, no. 5, pp. 897–903.

  18. GOST (State Standard) no. 8050-85: Gaseous and Liquid Carbon Dioxide. Specifications, Moscow: Izd. Standartov, 1995.

  19. Lemmon, E.W., Huber, M.L., and McLinden, M.O., NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1., 2013.

  20. Dubinin, M.M., Prog. Surf. Membr. Sci., 1975, vol. 9, pp. 1–70.

    Article  CAS  Google Scholar 

  21. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, no. 2, pp. 309–319.

    Article  CAS  Google Scholar 

  22. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Fundamentals for Adsorptive Technique), Moscow: Khimiya, 1976.

  23. Anuchin, K.M., Fomkin, A.A., Korotych, A.P., and Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, pp. 173–177.

    Article  CAS  Google Scholar 

  24. Dubinin, M.M., Carbon, 1989, vol. 27, pp. 457–467.

    Article  CAS  Google Scholar 

  25. Kayal, S., Sun, B., and Chakraborty, A., Energy, 2015, vol. 91, pp. 772–781.

    Article  CAS  Google Scholar 

  26. Seo-Yul Kim, Jo Hong Kang, Seung-Ik Kim, and Youn-Sang Bae, Chem. Eng. J., 2019, vol. 365, pp. 242–248.

    Article  CAS  Google Scholar 

  27. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Yu., Shkolin, A.V., Strizhenov, E.M., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, pp. 493–498.

    Article  Google Scholar 

  28. Men’shchikov, I.E., Fomkin, A.A., Arabei, A.B., Shkolin, A.V., and Strizhenov, E.M., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, pp. 575–580.

    Article  Google Scholar 

  29. Shkolin, A.V. and Fomkin, A.A., Russ. Chem. Bull., 2009, vol. 58, pp. 717–721.

    Article  CAS  Google Scholar 

  30. Strizhenov, E.M., Shkolin, A.V., Fomkin, A.A., Sinitsyn, V.A., Zherdev, A.A., Smirnov, I.A., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, pp. 15–21.

    Article  CAS  Google Scholar 

Download references

Funding

The work is carried out within the framework of a state order (project no. 01201353185) and a plan of the Scientific Council of the Russian Academy of Sciences in Physical Chemistry (theme no. 20-03-460–01). Experiments were performed with the use of equipment of the Center for Collective Use of the Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Men’shchikov.

Additional information

Translated by E. Khozina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shchikov, I.E., Fomkin, A.A., Romanov, Y.A. et al. Carbon Nanoporous Adsorbents Prepared from Walnut Shell for Liquefied Natural Gas Vapor Recovery in Cryogenic Storage Systems. Prot Met Phys Chem Surf 56, 1122–1133 (2020). https://doi.org/10.1134/S2070205120050202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120050202

Keywords:

Navigation