Skip to main content
Log in

Wear-Resistant and Anticorrosive Coatings Based on Chrome Carbide Cr7C3 Obtained by Electric Spark Deposition

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

This work is devoted to the deposition of Cr3C2 chromium carbide powder on steel 35 by electrospark treatment in titanium granules. Three mixtures of granules containing Cr3C2 powder were prepared from 7.4 to 15.6 vol %. X-ray phase analysis of coatings showed the predominance of the Cr7C3 phase, which is the product of the decarbidation of Cr3C2 chromium carbide when it interacts with the iron of the substrate. With an increase in the powder content in the mixture of granules, the microhardness of the coatings increased from 8.2 to 9.8 GPa. The average coefficient of friction of the coatings ranged from 0.42 to 0.68. The wear resistance of coatings in dry wear mode was 20–57 times higher than that of steel 35. Polarization tests of coatings in 3.5% NaCl solution showed significantly lower corrosion potential and current, and higher resistance to polarization compared to steel 35. Study of heat resistance at a temperature of 700°C showed that the use of coatings on steel 35 increases the resistance of its surface to high-temperature gas corrosion by 14–18 times per 100 h of testing. The tests carried out have shown that the optimal content of Cr3C2 powder in a mixture with granules is in the range of 11.7–15.6 vol %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Miorin, E., Montagner, F., Zin, V., et al., Surf. Coat. Technol., 2019, vol. 377, article no. 124890.

  2. Cheng, J., Wang, B., Liu, Q., et al., J. Alloys Compd., 2017, vol. 716, p. 88.

    Article  CAS  Google Scholar 

  3. Vijay, S., Wang, L., Lyphout, C., et al., Appl. Surf. Sci., 2019, vol. 493, p. 956.

    Article  CAS  Google Scholar 

  4. Farotade, G.A., Adesina, O.S., Popoola, A.P.I., et al., Metallogr., Microstruct., Anal., 2019, vol. 8, p. 349.

    CAS  Google Scholar 

  5. Bazhin, P.M., Kostitsyna, E.V., Stolin, A.M., et al., Ceram. Int., 2019, vol. 45, p. 9297.

    Article  CAS  Google Scholar 

  6. Burkov, A.A., Pyachin, S.A., Ermakov, M.A., et al., J. Mater. Eng. Perform., 2017, vol. 26, p. 901.

    Article  CAS  Google Scholar 

  7. Kusinski, J., Kac, S., Kopia, A., et al., Bull. Pol. Acad. Sci.: Tech. Sci., 2012, vol. 60, p. 711.

    CAS  Google Scholar 

  8. Santo, L., Int. J. Surf. Sci. Eng., 2008, vol. 2, p. 327.

    Article  CAS  Google Scholar 

  9. Li, Z., Gao, W., and He, Y., Scr. Mater., 2001, vol. 45, p. 1099.

    Article  CAS  Google Scholar 

  10. Burkov, A.A., Zaitsev, A.V., Zaikova, E.R., et al., Prot. Met. Phys. Chem. Surf., 2019, vol. 55, p. 102.

    Article  CAS  Google Scholar 

  11. Wang, X.-R., Wang, Z.-Q., Li, W.-S., et al., Mater. Lett., 2017, vol. 197, p. 143.

    Article  CAS  Google Scholar 

  12. Zhao, H., Gao, C., Wu, X., et al., Ceram. Int., 2019, vol. 45, no. 17, part B, p. 22528. https://doi.org/10.1016/j.ceramint.2019.07.279

  13. Radek, N., Scendo, M., Pliszka, I., et al., Powder Metall. Met. Ceram., 2018, vol. 57, p. 316.

    Article  CAS  Google Scholar 

  14. Kuptsov, K.A., Sheveyko, A.N., Zamulaeva, E.I., et al., Mater. Des., 2019, vol. 167, article no. 107645. https://doi.org/10.1016/j.matdes.2019.107645

    Article  CAS  Google Scholar 

  15. Kiryukhantsev-Korneev, P.V., Sheveyko, A.N., Shvindina, N.V., et al., Ceram. Int., 2018, vol. 44, p. 7637.

    Article  CAS  Google Scholar 

  16. Burkov, A.A. and Pyachin, S.A., Mater. Des., 2015, vol. 80, p. 109.

    Article  CAS  Google Scholar 

  17. Burkov, A.A. and Kulik, M.A., Lett. Mater., 2019, vol. 9, p. 243.

    Article  Google Scholar 

  18. Bulloch, J.H. and Henderson, J.L., Int. J. Pressure Vessels Piping, 1994, vol. 58, p. 321.

    Article  CAS  Google Scholar 

  19. Aghili, S.E. and Shamanian, M., Opt. Laser Technol., 2019, vol. 119, article no. 105652.

    Article  CAS  Google Scholar 

  20. Yang, M.S., Liu, X.B., Fan, J.W., et al., Appl. Surf. Sci., 2012, vol. 258, p. 3757.

    Article  CAS  Google Scholar 

  21. Liu, X.B. and Wang, H.M., Appl. Surf. Sci., 2006, vol. 252, p. 5735.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Burkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkov, A.A., Kulik, M.A. Wear-Resistant and Anticorrosive Coatings Based on Chrome Carbide Cr7C3 Obtained by Electric Spark Deposition. Prot Met Phys Chem Surf 56, 1217–1221 (2020). https://doi.org/10.1134/S2070205120060064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205120060064

Keywords:

Navigation