Skip to main content
Log in

On the Effect of an Electrolyte and Impregnating Solution on Microcrystal Growth on the Surface of W-Containing PEO Coatings on Titanium at Oxidative Annealing

  • NEW SUBSTANCES, MATERIALS, AND COATINGS
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

It has been confirmed in the present work that the components of an electrolyte and impregnating solution accumulated in pores can serve as a material for the microcrystal formation on the surface of oxide layers at high-temperature oxidative annealing. WO3 microcrystals were formed in the pores and along the pore perimeter of coatings formed by the method of plasma-electrolytic oxidation (PEO) in aqueous solutions with Na2WO4. Hemispheres containing NiWO4 nanogranules occluded the coating pores after their additional impregnation with an aqueous solution Ni(NO3)2 and annealing. The pore content has been analyzed, and possible mechanisms for its transformation into microcrystals and hemispheres have been considered. The obtained results were important for determination of the methods of targeted change in the composition and architecture of the complex oxide coatings' surface and, consequently, for controlling their functional properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Petrovic, S., Stojadinovic, S., Rozic, L., Radic, N., Grbic, B., and Vasilic, R., Surf. Coat. Technol., 2015, vol. 269, pp. 250–257. https://doi.org/10.1016/j.surfcoat.2014.12.026

    Article  CAS  Google Scholar 

  2. Chen, L., Qu, Y., Yang, X., Liao, B., Xue, W.B., and Cheng, W., Mater. Chem. Phys., 2017, vol. 201, pp. 311–322. https://doi.org/10.1016/j.matchemphys.2017.08.013

    Article  CAS  Google Scholar 

  3. Vasilyeva, M.S., Rudnev, V.S., Tulush, A.I., Nedozorov, P.M., and Ustinov, A.Y., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 6, pp. 968–973. https://doi.org/10.1134/S0036024415060321

    Article  CAS  Google Scholar 

  4. Rudnev, V.S., Lukiyanchuk, I.V., Vasilyeva, M.S., Morozova, V.P., Zelikman, V.M., and Tarkhanova, I.G., Appl. Surf. Sci., 2017, vol. 422, pp. 1007–1014. https://doi.org/10.1016/j.apsusc.2017.06.071

    Article  CAS  Google Scholar 

  5. Yerokhin, A.L., Nie, X., Leyland, A., Matthews, A., and Dowey, S.J., Surf. Coat. Technol., 1999, vol. 122, pp. 73–93. https://doi.org/10.1016/S0257-8972(99)00441-7

    Article  CAS  Google Scholar 

  6. Lukiyanchuk, I.V. and Rudnev, V.S., Inorg. Mater., 2007, vol. 43, no. 3, pp. 264–267. https://doi.org/10.1134/S0020168507030107

    Article  CAS  Google Scholar 

  7. Rudnev, V.S., Vasilyeva, M.S., and Lukiyanchuk, I.V., Inorg. Mater., 2019, vol. 55, no. 7, pp. 681–686. https://doi.org/10.1134/S0020168519070148

    Article  CAS  Google Scholar 

  8. Luo, Q., Cai, Q.Z., He, J., Li, X.W., Chen, X.D., Pan, Z.H., and Li, Y.J., Int. J. Appl. Ceram. Technol., 2014, vol. 11, no. 2, pp. 254–262. https://doi.org/10.1111/ijac.12062

    Article  CAS  Google Scholar 

  9. Jiang, Y.N., Liu, B., Zhai, Z.F., Liu, X.Y., Yang, B., Liu, L.S., and Jiang, X., Appl. Surf. Sci., 2015, vol. 356, pp. 273–281. https://doi.org/10.1016/j.apsusc.2015.08.080

    Article  CAS  Google Scholar 

  10. Jiang, Y.N., Liu, B.D., Yang, W.J., Yang, B., Liu, X.Y., Zhang, X.L., Mohsin, M.A., and Jiang, X., CrystEngComm, 2016, vol. 18, no. 10, pp. 1832–1841. https://doi.org/10.1039/c5ce02445e

    Article  CAS  Google Scholar 

  11. Grilikhes, S.Ya., Obezzhirivanie, travlenie i polirovanie metallov (Degreasing, Etching and Polishing of Metals), Leningrad: Mashinostroenie, 1977.

  12. Launay, J.P., Boyer, M., and Chauveau, F., J. Inorg. Nucl. Chem., 1976, vol. 38, no. 2, pp. 243–247. https://doi.org/10.1016/0022-1902(76)80402-2

    Article  CAS  Google Scholar 

  13. Morlige, J.R., Skeldon, P., Thompson, G.E., Habazaki, H., Shimizu, K., and Wood, G.S., Electrochim. Acta, 1999, vol. 44, no. 14, pp. 2423–2435. https://doi.org/10.1016/S0013-4686(98)00363-6

    Article  Google Scholar 

  14. Lur'e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook on Analytical Chemistry), Moscow: Khimiya, 1989.

  15. Lassner, E. and Schubert, W.D., Tungsten - Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, New York: Springer, 1999.

  16. Gillet, M., Delamare, R., and Gillet, E., J. Cryst. Growth, 2005, vol. 279, nos. 1–2, pp. 93–99. https://doi.org/10.1016/j.jcrysgro.2005.01.089

    Article  CAS  Google Scholar 

  17. Vasilyeva, M.S., Rudnev, V.S., Wiedenmann, F., Wybomov, S., Yarovaya, T.P., and Jiang, X., Appl. Surf. Sci., 2011, vol. 258, no. 2, pp. 719–726.

    Article  CAS  Google Scholar 

  18. Rudnev, V.S., Malyshev, I.V., Lukiyanchuk, I.V., and Kuryavyi, V.G., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 4, pp. 455–461.

    Article  CAS  Google Scholar 

  19. Viktorov, V.V., Belaya, E.A., and Serikov, A.S., Inorg. Mater., 2012, vol. 48, no. 5, pp. 488–493. https://doi.org/10.1134/S0020168512050202

    Article  CAS  Google Scholar 

  20. Rudnev, V.S., Morozova, V.P., Lukiyanchuk, I.V., Tkachenko, I.A. Adigamova, M.V., Ustinov, A.Yu., Kharitonskii, P.V., Frolov, A.M., and Boev, S.A., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 3, pp. 309–318. https://doi.org/10.1134/S2070205113030143

    Article  CAS  Google Scholar 

  21. Rogov, A.B., Mater. Chem. Phys., 2015, vol. 167, pp. 136–144. https://doi.org/10.1016/j.matchemphys.2015.10.020

    Article  CAS  Google Scholar 

  22. Hakimizad, A., Raeissi, K., Santamaria, M., and Asghari, M., Electrochim. Acta, 2018, vol. 284, pp. 618–629. https://doi.org/10.1016/j.electacta.2018.07.200

    Article  CAS  Google Scholar 

  23. Tu, W.B., Cheng, Y.L., Wang, X.Y., Zhan, T.Y., Han, J.X., and Cheng, Y.L., J. Alloys Compd., 2017, vol. 725, pp. 199–216. https://doi.org/10.1016/j.jallcom.2017.07.117

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grant 18-03-00418 of the Russian Foundation for Basic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Rudnev.

Additional information

Translated by D. Marinin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudnev, V.S., Lukiyanchuk, I.V., Chernykh, I.V. et al. On the Effect of an Electrolyte and Impregnating Solution on Microcrystal Growth on the Surface of W-Containing PEO Coatings on Titanium at Oxidative Annealing. Prot Met Phys Chem Surf 56, 1201–1209 (2020). https://doi.org/10.1134/S207020512005024X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020512005024X

Keywords:

Navigation