Skip to main content
Log in

Electron Temperature Profiles Formed under Conditions of the Axial ECR Plasma Heating at the L-2M Stellarator

  • STELLARATORS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The shape is analyzed of the electron temperature profiles measured in experiments on the axial ECR heating at the L-2M stellarator at different densities and heating powers. It is ascertained that when the reduced ECR heating power exceeds some threshold value, the electron temperature profiles become broadened and flat in the core region of the plasma column. The correlation is revealed between the appearances of the flat temperature profiles and the density profiles with a dip in the axial region (the dip-shaped profiles) occurring as a result of the density pump-out effect. It is concluded that the appearance of the dip-shaped density profiles in the plasma results in a change in the mechanism of microwave radiation absorption. Hypothetically, the cyclotron absorption of the electron Bernstein waves becomes the dominant mechanism for the microwave radiation absorption that, in turn, results in the formation of the broad and flat (in the core region) electron temperature profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. M. Batanov, V. I. Belousov, Yu. F. Bondar’, V. D. Borzosekov, D. G. Vasil’kov, S. E. Grebenshchikov, I. A. Ivannikov, L. V. Kolik, E. M. Konchekov, D. V. Malakhov, N. V. Matveev, A. I. Meshcheryakov, A. E. Petrov, K. A. Sarksyan, N. N. Skvortsova, et al., Prikl. Fiz., No. 6, 79 (2012).

  2. A. I. Meshcheryakov, G. M. Batanov, V. D. Borzosekov, S. E. Grebenshchikov, I. A. Grishina, N. K. Kharchev, Yu. V. Kholnov, L. V. Kolik, E. M. Konchekov, L. M. Kovrizhnykh, A. A. Letunov, V. P. Logvinenko, D. V. Malakhov, A. E. Petrov, K. A. Sarksyan, et al., J. Phys.: Conf. Ser. 907, 012016 (2017).

  3. A. S. Sakharov and M. A. Tereshchenko, Plasma Phys. Rep. 28, 539 (2002).

    Article  ADS  Google Scholar 

  4. D. K. Akulina, E. D. Andryukhina, M. S. Berezhetskii, S. E. Grebenshchikov, G. S. Voronov, I. S. Sbitnikova, O. I. Fedyanin, Yu. V. Khol’nov, and I. S. Shpigel’, Plasma Phys. Rep. 4, 569 (1978).

    Google Scholar 

  5. A. I. Meshcheryakov, D. K. Akulina, G. M. Batanov, M. S. Berezhetskii, G. S. Voronov, G. A. Gladkov, S. E. Grebenshchikov, V. A. Grinchuk, I. A. Grishina, L. V. Kolik, N. F. Larionova, A. A. Letunov, V. P. Logvinenko, A. E. Petrov, A. A. Pshenichnikov, et al., Plasma Phys. Rep. 31, 452 (2005).

    Article  ADS  Google Scholar 

  6. A. I. Meshcheryakov and I. Yu. Vafin, Prikl. Fiz., No. 5, 42 (2018).

  7. I. Yu. Meshcheryakov, I. Yu. Vafin, and I. A. Grishina, Instrum. Exp. Tech. 61, 842 (2018). https://doi.org/10.1134/S0020441218050196

    Article  Google Scholar 

  8. A. A. Letunov, E. V. Voronova, S. E. Grebenshchikov, and V. P. Logvinenko, in XVIII All-Russian Conference on Diagnostics of High-Temperature Plasmas, Krasnaya Pakhra, 2019, Book of Abstracts, p. 203.

  9. TFR Group, Nucl. Fusion 25, 1011 (1985).

    Article  Google Scholar 

  10. V. Erckmann and U. Gasparino, Plasma Phys. Control. Fusion 36, 1869 (1994).

    Article  ADS  Google Scholar 

  11. U. Stroth, T. Geist, J. P. T. Koponen, H.-J. Hartfuß, P. Zeiler and ECRH and W7-AS team, Phys. Rev. Lett. 82, 928 (1999). https://doi.org/10.1103/PhysRevLett.82.928

    Article  ADS  Google Scholar 

  12. H. Renner, E. Anabitarte, E. Ascasibar, S. Besshou, R. Brakel, R. Burhenn, G. Cattanei, A. Dodhy, D. Dorst, A. Elsner, K. Engelhardt, V. Erckmann, D. Evans, U. Gasparino, G. Grieger, et al., Plasma Phys. Control. Fusion 31, 1579 (1989).

    Article  ADS  Google Scholar 

  13. R. Makino, S. Kubo, T. Ido, K. Tanaka, T. Shimozuma, Y. Yoshimura, M. Nishiura, H. Igami, H. Takahashi, A. Shimizu, and S. Ogasawara, Plasma Fusion Res. 8, 2402115 (2013). https://doi.org/10.1585/pfr.8.2402115

  14. A. I. Meshcheryakov, I. Yu. Vafin, and I. A. Grishina, Bull. Lebedev Phys. Inst. 47, 10 (2020). https://doi.org/10.3103/S1068335620010042

    Article  ADS  Google Scholar 

  15. E. Z. Gusakov and A. Yu. Popov, Phys. Plasmas 23, 082503 (2016).

  16. E. Z. Gusakov and A. Yu. Popov, Nucl. Fusion 59, 104003 (2019).

  17. A. I. Meshcheryakov, I. Yu. Vafin, I. A. Grishina, A. A. Letunov, and M. A. Tereshchenko, Plasma Phys. Rep. 43, 599 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.A. Letunov, E.V. Voronova, and V.P. Logvinenko for the provided data on the plasma density profiles in different operating regimes of the L-2M stellarator.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-02-00609).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Meshcheryakov or I. A. Grishina.

Additional information

Translated by I. Grishina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshcheryakov, A.I., Vafin, I.Y. & Grishina, I.A. Electron Temperature Profiles Formed under Conditions of the Axial ECR Plasma Heating at the L-2M Stellarator. Plasma Phys. Rep. 46, 1144–1149 (2020). https://doi.org/10.1134/S1063780X20120041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20120041

Keywords:

Navigation