Skip to main content
Log in

Features of a Supersonic Ionization Wave in Argon at Atmospheric Pressure in a Sub-Threshold Microwave Field

  • LOW-TEMPERATURE PLASMA
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

In the subthreshold microwave discharge (the wavelength of 4 mm) in argon at the pressure of 750 Torr at intensities of the wave beam from 3 to 7.8 kW/cm2, the velocity of the ionization front, measured from the phase change of the reflected wave, increases approximately as the intensity on the wave beam axis in the power of 3/2 from 0.5 × 105 to 2.9 × 105 cm/s. This velocity of the discharge front in argon is 20–30 times higher than the velocity of the discharge front in air at the same intensities in the microwave beam. The glow structure of the discharge at intensities higher than 3 kW/cm2 is similar to the glow structure in molecular gases. An even finer structure of the discharge is observed at glow intensities on the wave beam axis below 3 kW/cm2. The gas temperature in the discharge at radiation intensity of 6 kW/cm2 is 6 kK. It is concluded that the volume of high-temperature regions in the discharge is 0.01 of the volume of the discharge region. The problem of the mechanism of the argon ionization and the possibility of the development of ionization-overheating instability in a non-self-sustained microwave discharge in the UV halo of the discharge front are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. I. A. Kossyi, K. V. Artem’ev, G. M. Batanov, N. K. Be-rezhetskaya, A. M. Davydov, N. K. Kharchev, N. A. Kozhevnikova, K. A. Sarksyan, S. O. Sysoev, and S. M. Temchin, in Proceedings of the 11th International Symposium on Non-Thermal/Thermal Plasma Pollution Control Technology & Sustainable Energy, Montegrotto Terme, 2018, p. 93.

  2. N. K. Kharchev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, D. V. Malakhov, A. E. Petrov, K. A. Sarksyan, and V. D. Stepakhin, in Proceedings of the 10th International Workshop “Strong Microwaves and Terahertz Waves: Sources and Applications,” Nizhny Novgorod, 2017, p. 99.

  3. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, N. A. Kozhevnikova, E. M. Konchekov, I. A. Kossyi, K. A. Sarksyan, V. D. Stepakhin, S. O. Sysoev, S. M. Temchin, and N. K. Kharchev, Plasma Phys. Rep. 45, 523 (2019).

    Article  ADS  Google Scholar 

  4. N. A. Bogatov, Yu. Ya. Brodsky, S. V. Golubev, and V. G. Zorin, in Proceedings of the XVIII International Conference on Phenomena in Ionized Gases, Swansea, 1987, Contributed Papers 4, p. 864.

  5. G. M. Batanov, S. I. Gritsinin, I. A. Kossyi, A. N. Magunov, V. P. Silakov, and N. M. Tarasova, in Plasma Physics and Plasma Electronics, Ed. by L.M. Kovrizhnykh (Nova Science, Commack, NY, 1985), p. 241.

    Google Scholar 

  6. N. A. Bogatov, Yu. Ya. Brodskii, S. V. Golubev, S. I. Gritsinin, V. G. Zorin, I. A. Kossyi, and N. M. Tarasova, Kratk. Soobshch. Fiz., No. 9, 32 (1984).

  7. A. Kh. Mnatsakanyan and G. V. Naidis, Plasma Phys. Rep. 16, 275 (1990).

    Google Scholar 

  8. A. Sidorov, S. Razin, A. Veselov, M. Viktorov, A. Vodopyanov, A. Luchinin, and M. Glyavin, in Proceedings of the 46th EPS Conference on Plasma Physics, Milan, 2019, ECA 43C, O5.302 (2019). http://ocs.ciemat.es/EPS2019PAP/pdf/O5.302.pdf.

  9. V. G. Avetisov, S. I. Gritsinin, A. V. Kim, I. A. Kossyi, A. Yu. Kostinskii, M. A. Misakyan, A. I. Nadezhdenskii, N. M. Tarasova, and A. N. Khusnutdinov, JETP Lett. 51, 348 (1990).

    ADS  Google Scholar 

  10. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, D. V. Malakhov, A. E. Petrov, K. A. Sarksyan, V. D. Stepakhin, and N. K. Kharchev, JETP Lett. 107, 219 (2018).

    Article  ADS  Google Scholar 

  11. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, A. E. Petrov, K. A. Sarksyan, V. D. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 45, 965 (2019).

    Article  ADS  Google Scholar 

  12. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, A. E. Petrov, K. A. Sarksyan, V. D. Stepakhin, and N. K. Kharchev, Plasma Phys. Rep. 44, 1146 (2018).

    Article  ADS  Google Scholar 

  13. K. V. Artem’ev, G. M. Batanov, N. K. Berezhetskaya, V. D. Borzosekov, A. M. Davydov, N. K. Kharchev, L. V. Kolik, E. M. Konchekov, I. A. Kossyi, A. E. Petrov, K. A. Sarksyan, and V. D. Stepakhin, in Proceedings of the 46th EPS Conference on Plasma Physics, Milan, 2019, ECA 43C, P4.3017 (2019). http://ocs.ciemat.es/EPS2019PAP/pdf/P4.3017.pdf.

  14. A. V. Kim and G. M. Fraiman, Plasma Phys. Rep. 9, 358 (1983).

    Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation (project no. 17-12-01352/p, Experiments on measuring the propagation velocity of a subthreshold microwave discharge in argon at atmospheric pressure).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Konchekov.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artem’ev, K.V., Batanov, G.M., Berezhetskaya, N.K. et al. Features of a Supersonic Ionization Wave in Argon at Atmospheric Pressure in a Sub-Threshold Microwave Field. Plasma Phys. Rep. 46, 1220–1226 (2020). https://doi.org/10.1134/S1063780X20120016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X20120016

Keywords:

Navigation