Skip to main content
Log in

Effect of Iron and Silicon Impurities on Phase Composition and Mechanical Properties of Al–6.3Cu–3.2Y Alloy

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract–The effect of impurities of iron and silicon on the phase composition and mechanical properties of the Al–6.3Cu–3.2Y wrought aluminum alloy is investigated in this work. According to the results of X-ray diffraction of the cast alloy, the presence of Al8Cu4Y, (Al,Cu)11Y, Al2Cu, and AlCu phases was confirmed, and the presence of peaks that likely correspond to the Al11Cu2Y2Si2 phase was noted. Elongated needle-like inclusions of the Al11Cu2Y2Si2 phase, which does not change its morphology in the course of homogenization, appear against the background of the fragmented compact eutectic. At the temperatures of annealing of the deformed sheets up to 300°C, the structure of alloy is represented by grains elongated along the rolling direction and has a slightly higher hardness than the same alloy without impurities. This is caused by the presence of larger amount of sufficiently dispersed intermetallic particles in the structure. When increasing the annealing temperature, the difference in hardness between the considered alloys decreases. Recrystallization occurs starting from 350°С, the hardness of the alloys levels out. After annealings at 100 and 150°C, the studied alloy demonstrates a good level of strength characteristics, the conditional yield stress is 284–325 MPa, the conditional ultimate strength is 304–369 MPa, which is 20–30 MPa higher than in the alloy without impurities. In general, the presence of permanent impurities of iron and silicon in aluminum does not have a negative effect on the mechanical properties of the studied alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. I. Novikov, Hot Brittleness of Nonferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  2. D. G. Eskin, Suyitno, and L. Katgerman, “Mechanical properties in the semi-solid state and hot tearing of aluminium alloys,” Prog. Mater. Sci. 49, 629–711 (2004).

    Article  CAS  Google Scholar 

  3. V. S. Zolotorevsky, N. A. Belov, and M. V. Glazoff, Casting Aluminum Alloys, Alcoa Technical Center (Alcoa Center, PA, 2007).

    Google Scholar 

  4. ASM Handbook. Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Vol. 2 (The Materials Information Company, 2010).

  5. V. S. Zolotorevskiy and A. V. Pozdniakov, “Determining the hot cracking index of Al–Si–Cu–Mg casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 27, 193–198 (2014).

    Article  Google Scholar 

  6. V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Cu–Mg matrix using thermodynamic calculations and mathematic simulation,” Phys. Met. Metallogr. 113, 1052–1060 (2012).

    Article  Google Scholar 

  7. T. Krachan, B. Stel’makhovych, and Yu. Kuz’ma, “The Y–Cu–Al system,” J. Alloys Compd. 349, 134–139 (2003).

    Article  CAS  Google Scholar 

  8. L. Zhang, P. J. Masset, X. Tao, G. Huanga, H. Luo, L. Liu, and Z. Jin, “Thermodynamic description of the Al–Cu–Y ternary system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 35, 574–579 (2011).

    Article  CAS  Google Scholar 

  9. L. Zhang, P. J. Masset, F. Cao, F. Meng, L. Liu, and Z. Jin, “Phase relationships in the Al-rich region of the Al–Cu–Er system,” J. Alloys Compd. 509, 3822–3831 (2011).

    Article  CAS  Google Scholar 

  10. L. G. Zhang, L. B. Liu, G. X. Huang, H. Y. Qi, B. R. Jia, and Z. P. Jin, “Thermodynamic assessment of the Al–Cu–Er system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 527–534 (2008).

    Article  CAS  Google Scholar 

  11. A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterisation of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34, 1489–1496 (2018).

    Article  CAS  Google Scholar 

  12. A. V. Pozdnyakov, R. Y. Barkov, Z. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).

    Article  CAS  Google Scholar 

  13. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasi-binary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121, 528–534 (2020).

    Google Scholar 

  14. A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).

    Article  CAS  Google Scholar 

  15. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36, 453–459 (2020).

    Article  CAS  Google Scholar 

  16. Y. Zhang, H. Gao, Y. Kuai, Y. Han, J. Wang, B. Sun, S. Gu, and W. You, “Effects of Y additions on the precipitation and recrystallization of Al–Zr alloys,” Mater. Charact. 86, 1–8 (2013).

    Article  Google Scholar 

  17. Y. Zhang, K. Gao, S. Wen, H. Huang, Z. Nie, and D. Zhou, “The study on the coarsening process and precipitation strengthening of Al3Er precipitate in Al–Er binary alloy,” J. Alloys Compd. 610, 27–34 (2014).

    Article  CAS  Google Scholar 

  18. Y. Zhang, J. Gu, Y. Tian, H. Gao, J. Wang, and B. Sun, “Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys,” Mater. Sci. Eng., A 616, 132–140 (2014).

    Article  CAS  Google Scholar 

  19. H. Gao, W. Feng, and Y. Wang, “Structural and compositional evolution of Al3(Zr,Y) precipitates in Al–Zr–Y alloy,” Mater. Charact. 121, 195–198 (2016).

    Article  CAS  Google Scholar 

  20. H. Gao, W. Feng, J. Gu, J. Wang, and B. Sun, “Aging and recrystallization behavior of precipitation strengthened Al–0.25Zr–0.03Y alloy,” J. Alloys Compd. 696, 1039–1045 (2017).

    Article  CAS  Google Scholar 

  21. A. V. Pozdnyakov, A. A. Osipenkova, D. A. Popov, S. V. Makhov, and V. I. Napalkov, “Effect of Low additions of Y, Sm, Gd, Hf and Er on the structure and hardness of alloy Al–0.2% Zr–0.1% Sc,” Met. Sci. Heat Treat. 58, 537–542 (2017).

    Article  CAS  Google Scholar 

  22. A. V. Pozdniakov, R. Y. Barkov, A. S. Prosviryakov, A. Y. Churyumov, I. S. Golovin, and V. S. Zolotorevskiy, “Effect of Zr on the microstructure, recrystallization behavior, mechanical properties and electrical conductivity of the novel Al–Er–Y alloy,” J. Alloys Compd. 765, 1–6 (2018).

    Article  CAS  Google Scholar 

  23. H. L. Hao, D. R. Ni, Z. Zhang, D. Wang, B. L. Xiao, and Z. Y. Ma, “Microstructure and mechanical properties of Al–Mg–Er sheets jointed by friction stir welding,” Mater. Des. 52, 706–712 (2013).

    Article  CAS  Google Scholar 

  24. Y. Dongxi, L. Xiaoyan, H. Dingyong, and H. Hui, “Effect of minor Er and Zr on microstructure and mechanical properties of Al–Mg–Mn alloy (5083) welded joints,” Mater. Sci. Eng., A 561, 226–231 (2013).

    Article  Google Scholar 

  25. S. P. Wen, W. Wang, W. H. Zhao, X. L. Wu, K. Y. Gao, H. Huang, and Z. R. Nie, “Precipitation hardening and recrystallization behavior of Al–Mg–Er–Zr alloys,” J. Alloys Compd. 687, 143–151 (2016).

    Article  CAS  Google Scholar 

  26. A. V. Pozdniakov, V. Yarasu, R. Yu. Barkov, O. A. Yakovtseva, S. V. Makhov, and V. I. Napalkov, “Microstructure and mechanical properties of novel Al–Mg–Mn–Zr–Sc–Er alloy,” Mater. Lett. 202, 116–119 (2017).

    Article  CAS  Google Scholar 

  27. F. Cao, X. Zhu, S. Wang, Lu. Shi, G. Xu, and J. Wen, “Quasi-superplasticity of a banded-grained Al–Mg–Y alloy processed by continuous casting-extrusion,” Mater. Sci. Eng., A 690, 433–445 (2017).

    Article  CAS  Google Scholar 

  28. R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).

    Article  CAS  Google Scholar 

  29. N. Q. Vo, D. C. Dunand, and D. N. Seidman, “Improving aging and creep resistance in a dilute Al–Sc alloy by microalloying with Si, Zr and Er,” Acta Mater. 63, 73–85 (2014).

    Article  CAS  Google Scholar 

  30. A. De Luca, D. C. Dunand, and D. N. Seidman, “Mechanical properties and optimization of the aging of a dilute Al–Sc–Er–Zr–Si alloy with a high Zr/Sc ratio,” Acta Mater. 119, 35–42 (2016).

    Article  CAS  Google Scholar 

  31. C. Booth-Morrison, D. N. Seidman, and D. C. Dunand, “Effect of Er additions on ambient and high-temperature strength of precipitation-strengthened Al–Zr–Sc–Si alloys,” Acta Mater. 60, 3643–3654 (2012).

    Article  CAS  Google Scholar 

  32. A. V. Pozdniakov, A. A. Aytmagambetov, S. V. Makhov, and V. I. Napalkov, “Effect of impurities of Fe and Si on the structure and strengthening upon annealing of the Al–0.2% Zr–0.1% Sc alloys with and without Y additive,” Phys. Met. Metallogr. 118, 479–484 (2017).

    Article  CAS  Google Scholar 

  33. A. V. Pozdnyakov and R. Yu. Barkov, “Effect of impurities on the phase composition and properties of a new alloy of the Al–Y–Er–Zr–Sc system,” Metallurgist 63, 79–86 (2019).

    Article  CAS  Google Scholar 

  34. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on phase composition and properties of Al–6% Cu–4.05% Er wrought alloy,” Phys. Met. Metallogr. 121, 1–5 (2020).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by Russian Science Foundation (project no. 19-79-10242).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Pozdniakov.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amer, S.M., Barkov, R.Y. & Pozdniakov, A.V. Effect of Iron and Silicon Impurities on Phase Composition and Mechanical Properties of Al–6.3Cu–3.2Y Alloy. Phys. Metals Metallogr. 121, 1002–1007 (2020). https://doi.org/10.1134/S0031918X20090021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20090021

Keywords:

Navigation