Skip to main content
Log in

Highly Porous Superconductors: Synthesis, Research, and Prospects

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

This paper presents a review of studies of superconductors with a porosity above 50%. The pores in such superconducting materials allow refrigerant penetration and provide efficient heat dissipation and stable operation. Methods for the synthesis of the main groups of porous superconductors are described. The results of studies of the structural, magnetic, and electrical transport properties are presented, and the features of the current flow through porous superconductors of various types are considered. The directions of further development and application of porous superconductors are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. W. K. Kwok, U. Welp, A. Glatz, A. E. Koshelev, K. J. Kihlstrom, and G. W. Crabtree, “Vortices in high-performance high-temperature superconductors,” Rep. Prog. Phys. 79, No. 11, 116501 (2016).

    Article  CAS  Google Scholar 

  2. A. P. Malozemoff, “Does the electric power grid need a room temperature superconductor?,” Phys. C 494, 1–4 (2013).

    Article  CAS  Google Scholar 

  3. E. P. Krasnoperov, V. S. Korotkov, and A. A. Kartamyshev, “Small-sized hybrid magnet with pulsed field magnetization,” J. Supercond. Novel Magn. 27, No. 8, 1845–1849 (2014).

    Article  CAS  Google Scholar 

  4. J. H. Durrell, A. R. Dennis, J. Jaroszynski, M. D. Ainslie, K. G. B. Palmer, Y. H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. E. Hellstrom, and D. A. Cardwell, “A trapped field of 17.6 T in melt-processed, bulk Gd–Ba–Cu–O reinforced with shrink-fit steel,” Supercond. Sci. Technol. 27, No. 8 (2014).

  5. J. H. Durrell, M. D. Ainslie, D. Zhou, P. Vanderbemden, T. Bradshaw, S. Speller, M. Filipenko, and D. A. Cardwell, “Bulk superconductors: a roadmap to applications,” Supercond. Sci. Technol. 31, No. 10, 103501 (2018).

    Article  CAS  Google Scholar 

  6. A. V. Gurevich and R. G. Mints, “Self-heating in normal metals and superconductors,” Rev. Mod. Phys., 59, No. 4, 941–999 (1987).

    Article  CAS  Google Scholar 

  7. V. S. Korotkov, E. P. Krasnoperov, and A. A. Kartamyshev, “Pulse heating and negative magnetic relaxation on bulk HTS annuli,” J. Supercond. Novel Magn. 28, No. 9, 2815–2819 (2015).

    Article  CAS  Google Scholar 

  8. I. Nettleship, “Applications of porous ceramics,” Key Eng. Mater. 122–124, 305–324 (1996).

    Article  Google Scholar 

  9. F. A. L. Dullien, Porous Media.Fluid Transport and Pore Structure (Academic Press, 1992), p. 574.

    Google Scholar 

  10. A. P. Karnaukhov, Adsorbtsiya: Tekstura Dispersnykh I Poristykh Materialov (Nauka, SO RAN, 1999), p. 469.

  11. K. Meyer, P. Lorenz, B. Bohl-Kuhn, and P. Klobes, “Porous solids and their characterization methods of investigation and application,” Cryst. Res. Technol. 29, No. 7, 903–930 (1994).

    Article  CAS  Google Scholar 

  12. M. R. Koblischka and A. Koblischka-Veneva, “Porous high-Tc superconductors and their applications,” AIMS Mater. Sci. 5, No. 6, 1199–1213 (2018).

    Article  CAS  Google Scholar 

  13. E. S. Reddy and G. J. Schmitz, “Superconducting foams,” Supercond. Sci. Technol. 15, No. 8, 21–24 (2002).

    Article  Google Scholar 

  14. M. D. Montminy, A. R. Tannenbaum, and C. W. MacOsko, “The 3D structure of real polymer foams,” J. Colloid Interface Sci. 280, No. 1, 202–211 (2004).

    Article  CAS  Google Scholar 

  15. S. O. Gladkov, “On the temperature dependence of the Lorentz number in a metallic inhomogeneous medium,” Phys. Met. Metallogr. 101, No. 3, 218–222 (2006).

    Article  Google Scholar 

  16. W. Y. Jang, A. M. Kraynik, and S. Kyriakides, “On the microstructure of open-cell foams and its effect on elastic properties,” Int. J. Solids Struct. 45, nos. 7–8, 1845–1875 (2008).

    Article  Google Scholar 

  17. M. Bai and J. N. Chung, “Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams,” Int. J. Therm. Sci. 50, No. 6, 869–880 (2011).

    Article  Google Scholar 

  18. T. Wejrzanowski, J. Skibinski, J. Szumbarski, and K. J. Kurzydlowski, “Structure of foams modeled by Laguerre-Voronoi tessellations,” Comput. Mater. Sci. 67, 216–221 (2013).

    Article  Google Scholar 

  19. L. Maheo, P. Viot, D. Bernard, A. Chirazi, G. Ceglia, V. Schmitt, and O. Mondain-Monval, “Elastic behavior of multi-scale, open-cell foams,” Composites, Part B 44, No. 1, 172–183 (2013).

    Article  CAS  Google Scholar 

  20. M. Ambrosetti, M. Bracconi, G. Groppi, and E. Tronconi, “Analytical geometrical model of open cell foams with detailed description of strut-node intersection,” Chemie-Ingenieur-Technik 89, No. 7, 915–925 (2017).

    Article  CAS  Google Scholar 

  21. Z. Nie, Y. Lin, and Q. Tong, “Modeling structures of open cell foams,” Comput. Mater. Sci. 131, 160–169 (2017).

    Article  Google Scholar 

  22. M. Bracconi, M. Ambrosetti, M. Maestri, G. Groppi, and E. Tronconi, “A fundamental analysis of the influence of the geometrical properties on the effective thermal conductivity of open-cell foams,” Chem. Eng. Process. Process Intensif. 129, 181–189 (2018).

    Article  CAS  Google Scholar 

  23. H. Louati, T. Scheuermann, B. Maschke, M. L. Zanota, J. Vicente, P. Kotyczka, and I. Pitault, “Network-Based modeling of transport phenomena in solid and fluid phases of open-cell foams: construction of graphs,” Adv. Eng. Mater. 22, No. 5, 1901468 (2020).

    Article  CAS  Google Scholar 

  24. V. V. Polyakov and V. A. Turetskii, “The effect of structure on electrical conductivity of porous pseudoalloys,” Phys. Met. Metallogr. 87, No. 3, 196–199 (1999).

    Google Scholar 

  25. R. Zallen, “Polychromatic percolation: Coexistence of percolating species in highly connected lattices,” Phys. Rev. B 16, No. 4, 1426–1435 (1977).

    Article  CAS  Google Scholar 

  26. M. A. Ioannidis, M. J. Kwiecien, and I. Chatzis, “Electrical conductivity and percolation aspects of statistically homogeneous porous media,” Transp. Porous Media 29, No. 1, 61–83 (1997).

    Article  Google Scholar 

  27. D. A. Balaev, D. M. Gokhfeld, M. I. Petrov, S. I. Popkov, K. A. Shaikhutdinov, I. L. Belozerova, L. V. Kashkina, Yu. I. Kuzmin, and C. R. Michel, “Current-voltage characteristics of a foamed Bi1.8Pb0.3Sr2Ca2Cu3Ox high-temperature superconductor with fractal cluster structure,” Phys. Solid State 48, No. 2, 207–212 (2006).

    Article  CAS  Google Scholar 

  28. M. Koblischka, S. Naik, A. Koblischka-Veneva, M. Murakami, D. Gokhfeld, E. Reddy, and G. Schmitz, “Superconducting YBCO Foams as Trapped Field Magnets,” Materials (Basel) 12, No. 6, 853 (2019).

    Article  CAS  Google Scholar 

  29. E. Giion, K. D. Mitesku, Zh. P. Yulen, and S. Ru, “Fractals and percolation in porous medium,” Usp. Fiz. Nauk 161, No. 10, 121–128 (1991).

    Article  Google Scholar 

  30. B. Yu and J. Li, “Some fractal characters of porous media,” Fractals 9, No. 3, 365–372 (2001).

    Article  CAS  Google Scholar 

  31. M. Rieu and G. Sposito, “Fractal fragmentation, soil porosity, and soil water properties: I. Theory,” Soil Sci. Soc. Am. J. 55, No. 5, 1231–1238 (1991).

    Article  Google Scholar 

  32. P. M. Adler and J. F. Thovert, “Fractal porous media,” Transp. Porous Media. 13, No. 1, 41–78 (1993).

    Article  CAS  Google Scholar 

  33. P. M. Adler, “Transports in fractal porous media,” J. Hydrol. 187, Nos. 1–2, 195–213 (1996).

    Article  Google Scholar 

  34. A. G. Hunt, “Percolative transport in fractal porous media,” Chaos, Solitons Fractals. 19, No. 2, 309–325 (2004).

    Article  Google Scholar 

  35. B. Yu, J. Cai, and M. Zou, “On the physical properties of apparent two-phase fractal porous media,” Vadose Zo. J. 8, No. 1, 177–186 (2009).

    Article  Google Scholar 

  36. A. Emmerling and J. Fricke, “Scaling properties and structure of aerogels,” J. Sol-Gel Sci. Technol. 8, No. 1/2/3, 781–788 (1997).

  37. Yu. I. Kuz’min, “Features of the resistive transition of fractal superconducting structures,” Pis’ma Zh. Tekh. Fiz. 29, No. 10, 36–44 (2003).

    Google Scholar 

  38. Y. I. Kuzmin, “Dynamics of the magnetic flux trapped in fractal clusters of a normal phase in percolative superconductors,” J. Low Temp. Phys. 130, Nos. 3–4, 261–286 (2003).

    Article  CAS  Google Scholar 

  39. E. Bartolomé, X. Granados, T. Puig, X. Obradors, E. S. Reddy, and G. J. Schmitz, “Critical state in superconducting single-crystalline YBa2Cu3O7 foams: Local versus long-range currents,” Phys. Rev. B: Condens. Matter Mater. Phys. 70, No. 14, 144514 (2004).

    Article  CAS  Google Scholar 

  40. E. Bartolomé, F. Gömory, X. Granados, T. Puig, and X. Obradors, “Universal correlation between critical current density and normal-state resistivity in porous YBa2Cu3O7 – x thin films,” Supercond. Sci. Technol. 20, No. 10, 895 (2007).

    Article  CAS  Google Scholar 

  41. A. A. Bykov, K. Yu. Terent’ev, D. M. Gokhfel’d, and M. I. Petrov, “Fractal dimension of cluster boundaries in porous polycrystalline HTSC materials,” Phys. Solid State 54, No. 10, 1947–1950 (2012).

    Article  CAS  Google Scholar 

  42. J. R. Clem and V. G. Kogan, “Theory of the magnetization of granular superconductors: Application to high-Tc superconductors,” Jpn. J. Appl. Phys. 26, No. S3-2, 1161 (1987).

  43. J. R. Clem, “Granular and superconducting-glass properties of the high-temperature superconductors,” Phys. C 153155, 50–55 (1988).

    Article  Google Scholar 

  44. S. Senoussi, “Review of the critical current densities and magnetic irreversibilities in high Tc superconductors,” J. Phys. III. 2, No. 7, 1041–1257 (1992).

    CAS  Google Scholar 

  45. L. Ji, M. S. Rzchowski, N. Anand, and M. Tinkham, “Magnetic-field-dependent surface resistance and two-level critical-state model for granular superconductors,” Phys. Rev. B 47, No. 1, 470–483 (1993).

    Article  CAS  Google Scholar 

  46. Y. Noguchi, S. Ohara, B. Huybrechts, and M. Takata, “Effect of intragrain current on low-field magnetic-flux distributions of zero-field-cooled polycrystalline YBa2Cu3O7 – δ,” J. Appl. Phys. 78, No. 9, 5540–5544 (1995).

    Article  CAS  Google Scholar 

  47. M. Mahel’ and J. Pivarč, “Magnetic hysteresis in high-temperature cuprates,” Phys. C 308, Nos. 1–2, 147–160 (1998).

    Article  Google Scholar 

  48. V. V. Derevyanko, T. V. Sukhareva, and V. A. Finkel’, “Effect of the temperature, external magnetic field, and transport current on electrical properties, vortex structure evolution processes, and phase transitions in subsystems of superconducting grains and "weak links” of granular two-level high-temperature superconductor YBa2Cu3O7–δ,” Phys. Solid State 60, No. 3, 470–480 (2018).

    Article  CAS  Google Scholar 

  49. S. L. Ginzburg and N. E. Savitskaya, “Self-organization of the critical state in granular superconductors,” J. Exp. Theor. Phys. 117, No. 1, 202–216 (2000).

    Article  Google Scholar 

  50. N. D. Kuz’michev, “ Critical state of Josephson medium,” JETP Lett. 74, No. 5, 262–266 (2001).

    Article  CAS  Google Scholar 

  51. S. L. Ginzburg and N. E. Savitskaya, “Granular superconductors and a sandpile model with intrinsic spatial randomness,” Phys. Rev. E 66, No. 2, 026128 (2002).

    Article  CAS  Google Scholar 

  52. M. Turchinskaya, D. L. Kaiser, F. W. Gayle, A. J. Shapiro, A. Roytburd, L. A. Dorosinskii, V. I. Nikitenko, A. A. Polyanskii, and V. K. Vlasko-Vlasov, “Real-time observation of the effect of grain boundaries on magnetization of YBa2Cu3O7 – x polycrystals,” Phys. C 221, Nos. 1–2, 62–70 (1994).

    Article  CAS  Google Scholar 

  53. I. L. Landau, J. B. Willems, and J. Hulliger, “Detailed magnetization study of superconducting properties of YBa2Cu3O7 – x ceramic spheres,” J. Phys.: Condens. Matter 20, No. 9, 095222 (2008).

    Google Scholar 

  54. G. Wang, M. J. Raine, and D. P. Hampshire, “How resistive must grain boundaries in polycrystalline superconductors be, to limit Jc?,” Supercond. Sci. Technol. 30, No. 10, 104001 (2017).

    Article  CAS  Google Scholar 

  55. J. Horvat, S. Soltanian, A. V. Pan, and X. L. Wang, “Superconducting screening on different length scales in high-quality bulk MgB2 superconductor,” J. Appl. Phys. 96, No. 8, 4342–4351 (2004).

    Article  CAS  Google Scholar 

  56. A. A. Bykov, K. Yu. Terent’ev, D. M. Gokhfeld, N. E. Savitskaya, S. I. Popkov, and M. I. Petrov, “Superconductivity on interfaces of nonsuperconducting granules La2CuO4 and La1.56Sr0.44CuO4,” J. Supercond. Novel Magn. 31, No. 12, 3867–3874 (2018).

    Article  CAS  Google Scholar 

  57. A. A. Bykov, D. M. Gokhfeld, N. E. Savitskaya, K. Yu. Terentjev, S. I. Popkov, A. A. Mistonov, N. A. Grigoryeva, A. Zakhidov, and S. V. Grigoriev, “Flux pinning mechanisms and a vortex phase diagram of tin-based inverse opals,” Supercond. Sci. Technol. 32, No. 11, 115004 (2019).

    Article  CAS  Google Scholar 

  58. M. Zehetmayer, “Simulation of the current dynamics in superconductors: Application to magnetometry measurements,” Phys. Rev. B 80, No. 10, 104512 (2009).

    Article  CAS  Google Scholar 

  59. M. A. Angadi, A. D. Caplin, J. R. Laverty, and Z. X. Shen, “Non-destructive determination of the current-carrying length scale in superconducting crystals and thin films,” Phys. C 177, Nos. 4–6, 479–486 (2009).

    Article  Google Scholar 

  60. D. M. Gokhfel’d, “Circulation radius and critical current density in type II superconductors,” Pis’ma Zh. Tekh. Fiz. 45, No. 2, 3–5 (2019).

    Google Scholar 

  61. E. S. Reddy, N. H. Babu, Y. Shi, D. A. Cardwell, and G. J. Schmitz, “Processing of large grain Y-123 superconductors with pre-defined porous structures,” Supercond. Sci. Technol. 18, No. 2, S15 (2005).

    Article  CAS  Google Scholar 

  62. E. S. Reddy, M. Herweg, and G. J. Schmitz, “Processing of Y2BaCuO5 foams,” Supercond. Sci. Technol. 16, No. 5, 608 (2003).

    Article  CAS  Google Scholar 

  63. E. S. Reddy, J. G. Noudem, M. Tarka, and G. J. Schmitz, “Single-domain YBa2Cu3Oy thick films and fabrics prepared by an infiltration and growth process,” J. Mater. Res. 16, No. 4, 955–966 (2001).

    Article  CAS  Google Scholar 

  64. M. I. Petrov, T. N. Tetyueva, L. I. Kveglis, A. A. Efremov, G. M. Zeer, K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and S. G. Ovchinnikov, “Synthesis, microstructure, transport and magnetic properties of bismuth HTSC with a porous structure,” Pis’ma Zh. Tekh. Fiz. 29, No. 23, 40–45 (2003).

    Google Scholar 

  65. M. I. Petrov, T. N. Tetyeva, L. I. Kveglis, A. A. Efremov, G. M. Zeer, D. A. Balaev, K. A. Shaihutdinov, S. I. Popkov, and S. G. Ovchinnikov, “The synthesis, microstructure, transport and magnetic properties of Bi-based low density HTSC,” J. Mater. Process. Technol. 161, Nos. 1–2, 58–61 (2005).

    Article  CAS  Google Scholar 

  66. V. S. Kravchenko, M. A. Zhuravleva, E. M. Uskov, P. P. Bezverkhii, N. A. Bogolyubov, O. G. Potapova, and L. L. Makarshin, “Effect of excess Ca and Cu or Ca and Pb on the superconducting and electrical properties of Bi-2223 ceramics,” Inorg. Mater. 34, No. 10, 1074–1079 (1998).

    CAS  Google Scholar 

  67. E. P. Krasnoperov, V. A. Stoliarov, A. A. Bush, and B. P. Mikhajlov, “Superconductivity in porous MgB2,” Solid State Commun. 138, No. 9, 461–465 (2006).

    Article  CAS  Google Scholar 

  68. V. A. Grinenko, E. P. Krasnoperov, and B. P. Mikhailov, “Superconducting cellular MgB2,” Phys. Met. Metallogr. 103, No. 6, 561–565 (2007).

    Article  Google Scholar 

  69. P. Fiertek and W. Sadowski, “Processing of the Porous Structures of the YBa2Cu3O7 – δ high temperature superconductor,” Mater. Sci.-Pol. 24, No. 4 (2006).

  70. P. Fiertek, B. Andrzejewski, and W. Sadowski, “Synthesis and transport properties of porous superconducting ceramics of YBa2Cu3O7 – δ,” Rev. Adv. Mater. Sci. 23, No. 1, 52–56 (2010).

    CAS  Google Scholar 

  71. D. Walsh, S. C. Wimbush, and S. R. Hall, “Use of the polysaccharide dextran as a morphological directing agent in the synthesis of high-Tc superconducting YBa2Cu3O7 – δ sponges with improved critical current densities,” Chem. Mater. 19, No. 4, 647–649 (2007).

    Article  CAS  Google Scholar 

  72. D. Walsh, S. C. Wimbush, and S. R. Hall, “Improved critical current densities and compressive strength in porous superconducting structures containing calcium,” J. Phys. 97, No. 1, 012003 (2008).

    Google Scholar 

  73. D. Walsh, S. C. Wimbush, and S. R. Hall, “Reticulated superconducting YBCO materials of designed macromorphologies with enhanced structural stability through incorporation of lithium,” Supercond. Sci. Technol. 22, No. 1, 015026 (2009).

    Article  CAS  Google Scholar 

  74. J. Dedman, S. C. Wimbush, and S. R. Hall, Biopolymer mediated sol-gel synthesis of LuBa2Cu3O7 – δ,” Physica C 470, 237–238 (2010).

    Article  CAS  Google Scholar 

  75. S. C. Wimbush, D. Walsh, and S. R. Hall, “Synthesis and characterization of BaZrO3-doped YBa2Cu3O7 – δ microtapes with improved critical current densities,” Phys. C 470, Nos. 7–8, 373–377 (2010).

    Article  CAS  Google Scholar 

  76. Z. Zhang, S. C. Wimbush, A. Kursumovic, H. Suo, and J. L. MacManus-Driscoll, “Detailed study of the process of biomimetic formation of YBCO platelets from nitrate salts in the presence of the biopolymer dextran and a molten NaCl flux,” Cryst. Growth Des. 12, No. 11, 5635–5642 (2012).

    Article  CAS  Google Scholar 

  77. Z. Zhang, S. C. Wimbush, A. Kursumovic, H. Suo, and J. L. MacManus-Driscoll, “Role of the organic matrix in the biopolymer-mediated synthesis of platelike YBCO,” Adv. Mater. Res. 699, 268–272 (2013).

    Article  CAS  Google Scholar 

  78. Z. L. Zhang, H. Suo, L. Ma, A. Kursumovic, M. Liu, Y. Wang, J. L. MacManus-Driscoll, and S. C. Wimbush, “The effect of different salt additions on the microstructure of YBCO synthesized by a biomimetic method,” Adv. Mater. Res. 887888, 614–618 (2014).

    Article  CAS  Google Scholar 

  79. S. R. Hall, “Biomimetic synthesis of high-Tc, type-ii superconductor nanowires,” Adv. Mater. 18, No. 4, 487–490 (2006).

    Article  CAS  Google Scholar 

  80. E. Culverwell, S. C. Wimbush, and S. R. Hall, “Biotemplated synthesis of an ordered macroporous superconductor with high critical current density using a cuttlebone template,” Chem. Commun., No. 9, 1055–1057 (2008).

  81. R. Boston, A. Bell, V. P. Ting, A. T. Rhead, T. Nakayama, C. F. J. Faul, and S. R. Hall, “Graphene oxide as a template for a complex functional oxide,” CrystEngComm 17, No. 32, 6094–6097 (2015).

    Article  CAS  Google Scholar 

  82. Z. A. C. Schnepp, S. C. Wimbush, S. Mann, and S. R. Hall, “Structural evolution of superconductor nanowires in biopolymer gels,” Adv. Mater. 20, No. 9, 1782–1786 (2008).

    Article  CAS  Google Scholar 

  83. S. R. Hall, S. C. Wimbush, Y. Shida, and W. Ogasawara, “Biotemplated synthesis of superconducting plate-like YBa2Cu3O7 – δ using oligosaccharides,” Chem. Phys. Lett. 507, Nos. 1–3, 144–150 (2011).

    Article  CAS  Google Scholar 

  84. S. R. Hall, C. F. Hall, K. Hansberry, S. C. Wimbush, Y. Shida, and W. Ogasawara, “High Jc in a biopolymer-mediated synthesis of YBa2Cu3O7 – δ,” Supercond. Sci. Technol. 25, No. 3, 035009 (2012).

    Article  CAS  Google Scholar 

  85. V. Yu. Skudnev, A. A. Mironenko, A. Sh. Khachatryan, and V. Yu. Buz’ko, “Effect of template texturing on properties of Bi2Sr2Ca2Cu3O10 + x,” XX Mendeleev Congress on General and Applied Chemistry (2016), p. 374.

  86. E. A. Duarte, P. A. Quintero, M. W. Meisel, and J. C. Nino, “Electrospinning synthesis of superconducting BSCCO nanowires,” Phys. C 495, 109–113 (2013).

    Article  CAS  Google Scholar 

  87. X. L. Zeng, M. R. Koblischka, T. Karwoth, T. Hauet, and U. Hartmann, “Preparation of granular Bi-2212 nanowires by electrospinning,” Supercond. Sci. Technol. 30, No. 3, 035014 (2017).

    Article  CAS  Google Scholar 

  88. X. M. Cui, W. S. Lyoo, W. K. Son, D. H. Park, J. H. Choy, T. S. Lee, and W. H. Park, “Fabrication of YBa2Cu3O7 – δ superconducting nanofibres by electrospinning,” Supercond. Sci. Technol. 19, No. 12, 1264 (2006).

    Article  CAS  Google Scholar 

  89. E. A. Duarte, N. G. Rudawski, P. A. Quintero, M. W. Meisel, and J. C. Nino, “Electrospinning of superconducting YBCO nanowires,” Supercond. Sci. Technol. 28, No. 1, 015006 (2015).

    Article  CAS  Google Scholar 

  90. J. C. Bernardi, D. A. Modesto, M. S. Medina, A. Zenatti, E. C. Venancio, E. R. Leite, A. J. C. Lanfredi, and M. T. Escote, “Superconductor YBa2Cu3 – xNixO7 – δ compounds prepared by electrospinning,” Mater. Res. Express 6, No. 8, 086001 (2019).

  91. J. M. Li, X. L. Zeng, A. D. Mo, and Z. A. Xu, “Fabrication of cuprate superconducting La1.85Sr0.15CuO4 nanofibers by electrospinning and subsequent calcination in oxygen,” CrystEngComm 13, No. 23, 6964–6967 (2011).

    Article  CAS  Google Scholar 

  92. X. L. Zeng, M. R. Koblischka, and U. Hartmann, “Synthesis and characterization of electrospun superconducting (La,Sr)CuO4 nanowires and nanoribbons,” Mater. Res. Express 2, No. 9, 095002 (2015).

  93. X. L. Zeng, M. R. Koblischka, F. Laurent, T. Karwoth, A. Koblischka-Veneva, U. Hartmann, C. Chang, P. Kumar, and O. Eibl, “Characterization of electrospun Bi2Sr2CaCu2O8 + δ nanowires with reduced preparation temperature,” IEEE Trans. Appl. Supercond. 28, No. 4, 7200505 (2018).

    Article  Google Scholar 

  94. M. Rotta, L. Zadorosny, C. L. Carvalho, J. A. Malmonge, L. F. Malmonge, and R. Zadorosny, “YBCO ceramic nanofibers obtained by the new technique of solution blow spinning,” Ceram. Int. 42, No. 14, 16230–16234 (2016).

    Article  CAS  Google Scholar 

  95. M. Rotta, M. Motta, A. L. Pessoa, C. L. Carvalho, W. A. Ortiz, and R. Zadorosny, “Solution blow spinning control of morphology and production rate of complex superconducting YBa2Cu3O7 – x nanowires,” J. Mater. Sci.: Mater. Electron. 30, No. 9, 9045–9050 (2019).

    CAS  Google Scholar 

  96. C. R. Cena, G. B. Torsoni, L. Zadorosny, L. F. Malmonge, C. L. Carvalho, and J. A. Malmonge, “BSCCO superconductor micro/nanofibers produced by solution blow-spinning technique,” Ceram. Int. 43, No. 10, 7663–7667 (2017).

    Article  CAS  Google Scholar 

  97. A. Jung, S. Diebels, A. Koblischka-Veneva, J. Schmauch, A. Barnoush, and M. R. Koblischka, “Microstructural analysis of electrochemical coated open-cell metal foams by EBSD and nanoindentation,” Adv. Eng. Mater. 16, No. 1, 15–20 (2014).

    Article  CAS  Google Scholar 

  98. M. Koblischka, A. Koblischka-Veneva, E. S. Reddy, and G. J. Schmitz, “Analysis of the microstructure of superconducting YBCO foams by means of AFM and EBSD,” J. Adv. Ceram. 3, No. 4, 317–325 (2014).

    Article  CAS  Google Scholar 

  99. A. Koblischka-Veneva, M. R. Koblischka, N. Ide, K. Inoue, M. Muralidhar, T. Hauet, and M. Murakami, “Microstructural and magnetic analysis of a superconducting foam and comparison with IG-processed bulk samples,” J. Phys.: Conf. Ser. 695, No. 1, 012002 (2016).

  100. A. Koblischka-Veneva, M. R. Koblischka, J. Schmauch, and M. Murakami, “Transmission EBSD (t-EBSD) as tool to investigate nanostructures in superconductors,” J. Supercond. Novel Magn. 32, No. 10, 3155–3163 (2019).

    Article  CAS  Google Scholar 

  101. A. Koblischka-Veneva, M. R. Koblischka, X. L. Zeng, J. Schmauch, and U. Hartmann, “TEM and electron backscatter diffraction analysis (EBSD) on superconducting nanowires,” J. Phys.: Conf. Ser. 1054, No. 1, 012005 (2018).

    Google Scholar 

  102. K. Yu. Terent’ev, D. M. Gokhfel’d, S. I. Popkov, K. A. Shaikhutdinov, and M. I. Petrov, “Pinning in a porous high-temperature superconductor BI2223,” Phys. Solid State 53, No. 12, 2289–2293 (2011).

    Article  CAS  Google Scholar 

  103. J. Bock and A. M. Jacobi, “Geometric classification of open-cell metal foams using X-ray micro-computed tomography,” Mater. Charact. 75, 35–43 (2013).

    Article  CAS  Google Scholar 

  104. Plachenov, T.G. and Kolosentsev, S.D., Porosimetry (Khimiya, Leningrad, 1988).

    Google Scholar 

  105. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, and K. K. Unger, “Recommendations for the characterization of porous solids (Technical Report),” Pure Appl. Chem. 66, No. 8, 1739–1758 (1994).

    Article  CAS  Google Scholar 

  106. J. G. Noudem, E. S. Reddy, and G. J. Schmitz, “Magnetic and transport properties of YBa2Cu3Oy superconductor foams,” Phys. C 390, No. 4, 286–290 (2003).

    Article  CAS  Google Scholar 

  107. J. G. Noudem, “Development of shaping textured YBaCuO superconductors,” J. Supercond. Novel Magn. 24, No. 1–2, 105–110 (2011).

    Article  CAS  Google Scholar 

  108. M. R. Koblischka, A. Koblischka-Veneva, K. Berger, Q. Nouailhetas, B. Douine, E. S. Reddy, and G. J. Schmitz, “Current flow and flux pinning properties of YBCO foam struts,” IEEE Trans. Appl. Supercond. 29, No. 5, 8001405 (2019).

  109. M. R. Koblischka, A. Koblischka-Veneva, Kumar. Pavan, S. Naik, D. Gokhfeld, and M. Murakami,” Porous high-Tc superconducting cuprates: Advantages and applications,” J. Phys.: Conf. Ser. 1293, No. 1, 012009 (2019).

  110. M. R. Koblischka, A. Koblischka-Veneva, C. S. Chang, T. Hauet, E. S. Reddy, and G. J. Schmitz, “Flux pinning analysis of superconducting YBCO foam struts,” IEEE Trans. Appl. Supercond. 29, No. 3, 8001905 (2019).

  111. M. R. Koblischka, S. Pavan Kumar Naik, A. Koblischka-Veneva, D. Gokhfeld, and M. Murakami, “Flux creep after field trapping in YBa2Cu3Ox foams,” Supercond. Sci. Technol. 33, No. 4, 044008 (2020).

    Article  CAS  Google Scholar 

  112. X. L. Zeng, T. Karwoth, M. R. Koblischka, U. Hartmann, D. M. Gokhfeld, C. Chang, and T. Hauet, “Analysis of magnetization loops of electrospun nonwoven superconducting fabrics,” Phys. Rev. Mater. 1, No. 4, 044802 (2017).

    Article  Google Scholar 

  113. M. R. Koblischka, D. M. Gokhfeld, C. Chang, T. Hauet, and U. Hartmann, “Pinning force scaling of electrospun Bi-2212 nanowire networks,” Solid State Commun. 264, 16–18 (2017).

    Article  CAS  Google Scholar 

  114. M. R. Koblischka, X. L. Zeng, T. Karwoth, T. Hauet, and U. Hartmann, “Magnetic properties of electrospun non-woven superconducting fabrics,” AIP Adv. 6, No. 3, 035115 (2016).

    Article  CAS  Google Scholar 

  115. M. R. Koblischka, X. L. Zeng, T. Karwoth, T. Hauet, and U. Hartmann, “Transport and magnetic measurements on Bi2Sr2CaCu2O8 nanowire networks prepared via electrospinning,” IEEE Trans. Appl. Supercond. 26, No. 3, 1800605 (2016).

    Article  Google Scholar 

  116. D. M. Gokhfeld, D. A. Balaev, S. I. Popkov, K. A. Shaykhutdinov, and M. I. Petrov, “Magnetization loop and critical current of porous Bi-based HTS,” Phys. C 434, No. 2, 135–137 (2006).

    Article  CAS  Google Scholar 

  117. M. I. Petrov, D. A. Balaev, K. A. Shaihutdinov, D. M. Gokhfeld, S. I. Popkov, and S. A. Satzuk, “Magnetic properties of a low-density Bi-based HTSC,” Phys. Met. Metallogr. 101, No. 1, 29–32 (2006).

    Article  Google Scholar 

  118. K. A. Shaikhutdinov, D. A. Balaev, S. I. Popkov, and M. I. Petrov, “ Mechanism of formation of a negative magnetoresistance region in granular high-temperature superconductors,” Phys. Solid State 51, 1105–1109 (2009).

    Article  CAS  Google Scholar 

  119. M. I. Petrov, D. A. Balaev, I. L. Belozerova, S. I. Popkov, A. A. Dubrovskii, K. A. Shaikhutdinov, and O. N. Mart’yanov, “Increase in the diamagnetic response from low-density Bi1.8Pb0.3Sr1.9Ca2Cu3Ox high-temperature superconductors and Bi1.8Pb0.3Sr1.9Ca2Cu3Ox + Ag composites,” Tech. Phys. 54, 1130–1134 (2009).

    Article  CAS  Google Scholar 

  120. D. M. Gokhfeld, D. A. Balaev, M. I. Petrov, S. I. Popkov, K. A. Shaykhutdinov, and V. V. Val’kov, Magnetization asymmetry of type-II superconductors in high magnetic fields, J. Appl. Phys. American Institute of Physics. 109, No. 3, 033904 (2011).

    Article  CAS  Google Scholar 

  121. D.-X. Chen, R. W. Cross, and A. Sanchez, Effects of critical current density, equilibrium magnetization and surface barrier on magnetization of high temperature superconductors, Cryogenics (Guildf). Elsevier. 33, No. 7, 695–703 (1993).

  122. D. M. Gokhfel’d, “An extended critical state model: Asymmetric magnetization loops and field dependence of the critical current of superconductors,” Phys. Solid State 56, No. 12, 2380–2386 (2014).

    Article  CAS  Google Scholar 

  123. D. Larbalestier, A. Gurevich, D. M. Feldmann, and A. Polyanskii, “High-Tc superconducting materials for electric power applications,” Nature 414, No. 6861, 368–377 (2001).

    Article  CAS  Google Scholar 

  124. B. Hensel, G. Grasso, and R. Flükiger, “Limits to the critical transport current in superconducting (Bi,Pb)2Sr2Ca2Cu3O10 silver-sheathed tapes: The railway-switch model,” Phys. Rev. B 51, No. 21, 15456–15473 (1995).

    Article  CAS  Google Scholar 

  125. J. Horvat, S. X. Dou, H. K. Liu, and R. Bhasale, “Critical currents through strong links in Ag/Bi–Sr–Ca–Cu–O superconducting tapes,” Phys. C 271, Nos. 1–2, 51–58 (1996).

    Article  CAS  Google Scholar 

  126. G. Blatter, M. V. Feigel’man, V. B. Geschkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, No. 4, 1125–1388 (1994).

    Article  CAS  Google Scholar 

  127. K. A. Shaykhutdinov, D. A. Balaev, D. M. Gokhfeld, Yu. I. Kuzmin, S. I. Popkov, and M. I. Petrov, “Study of current–voltage characteristics of Bi-based high-temperature superconductors with fractal cluster structure,” Phys. C 435, Nos. 1–2, 19–22 (2006).

    Article  CAS  Google Scholar 

  128. K. A. Shaykhutdinov, D. A. Balaev, S. I. Popkov, A. D. Vasilyev, O. N. Martyanov, and M. I. Petrov, “Thermally activated dissipation in a novel foamed Bi‑based oxide superconductor in magnetic fields,” Supercond. Sci. Technol. 20, No. 6, 491–494 (2007).

    Article  CAS  Google Scholar 

  129. M. Prester, “Current transfer and initial dissipation in high-Tc superconductors,” Supercond. Sci. Technol. 11, No. 4, 333–357 (1998).

    Article  CAS  Google Scholar 

  130. D. A. Balaev, S. I. Popkov, K. A. Shaikhutdinov, M. I. Petrov, and D. M. Gokhfeld, “Magnetoresistance of porous polycrystalline htsc: effect of the transport current on magnetic flux compression in intergranular medium,” Phys. Solid State 56, No. 8, 1542–1547 (2014).

    Article  CAS  Google Scholar 

  131. D. A. Balaev, A. A. Dubrovskii, K. A. Shaikhutdinov, S. I. Popkov, D. M. Gokhfel’d, Yu. S. Gokhfeld, and M. I. Petrov, “Mechanism of the hysteretic behavior of the magnetoresistance of granular htscs: the universal nature of the width of the magnetoresistance hysteresis loop,” J. Exp. Theor. Phys. 108, No. 2, 241–248 (2009).

    Article  CAS  Google Scholar 

  132. M. I. Petrov, D. A. Balaev, I. L. Belozerova, A. D. Vasil’ev, D. M. Gokhfel’d, O. M. Mart’yanov, S. I. Popkov, and K. A. Shaikhutdinov, “ Obtaining by uniaxial pressing in a liquid medium and physical properties of bismuth HTSC ceramics with a high degree of texture,” Pis’ma Zh. Tekh. Fiz. 33, No. 17, 52–60 (2007).

    Google Scholar 

  133. M. I. Petrov, I. L. Belozerova, K. A. Shaikhutdinov, D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, A. D. Vasil’ev, and O. N. Mart’yanov, “Preparation, microstructure, magnetic and transport properties of bulk textured Bi1.8Pb0.3Sr1.9Ca2Cu3Ox and Bi1.8Pb0.3Sr1.9Ca2Cu3Ox + Ag ceramics,” Supercond. Sci. Technol. 21, No. 10, 105019 (2008).

    Article  CAS  Google Scholar 

  134. D. M. Gokhfel’d and D. A. Balaev, “Magnetization anisotropy in the textured Bi-2223 HTS in strong magnetic fields,” Phys. Solid State 62, No. 7, 1145–1149 (2020).

    Article  Google Scholar 

  135. E. P. Romanov, Yu. V. Blinova, S. V. Sudareva, T. P. Krinitsina, and I. I. Akimov, “Mechanism of formation, fine structure, and superconducting properties of high-temperature superconductors and superconducting composites,” Phys. Met. Metallogr. 101, No. 1, 27–44 (2006).

    Article  Google Scholar 

  136. A. L. Pessoa, M. J. Raine, D. P. Hampshire, D. K. Namburi, J. H. Durrell, and R. Zadorosny, “Successful production of Solution Blow Spun YBCO + Ag complex ceramics,” Ceram. Int. 46, No. 15, 24097 (2020).

  137. A. G. Mamalis, M. I. Petrov, D. A. Balaev, K. A. Shaihutdinov, D. M. Gohfeld, S. V. Militsyn, S. G. Ovchinnikov, and V. I. Kirko, “A dc superconducting fault current limiter using die-pressed YBa2Cu3O7 ceramic,” Supercond. Sci. Technol. 14, 413 (2001).

    Article  CAS  Google Scholar 

  138. J. X. Jin, Y. Xin, Q. L. Wang, Y. S. He, C. B. Cai, Y. S. Wang, and Z. M. Wang, “Enabling high-temperature superconducting technologies toward practical applications,” IEEE Trans. Appl. Supercond. 24, No. 5, 1–12 (2014).

    Google Scholar 

  139. Z. Jia, F. Liu, X. Jiang, and L. Wang, “Engineering lattice metamaterials for extreme property, programmability, and multifunctionality,” J. Appl. Phys. 127, No. 15, 150901 (2020).

    Article  CAS  Google Scholar 

  140. J. Shoer, W. Wilson, L. Jones, M. Knobel, and M. Peck, “Microgravity demonstrations of flux pinning for station-keeping and reconfiguration of CubeSat-sized spacecraft,” J. Spacecr. Rockets 47, No. 6, 1066–1070 (2010).

    Article  Google Scholar 

  141. W. Yang, D. Liao, Y. Ji, and L. Yao, “Effects of magnetization conditions on dynamic characteristics of spacecrafts with superconducting flux pinning docking interfaces,” J. Appl. Phys. 124, No. 21, 213901 (2018).

    Article  CAS  Google Scholar 

  142. A. Giffin, M. N. Shneider, and R. B. Miles, “Potential micrometeoroid and orbital debris protection system using a gradient magnetic field and magnetic flux compression,” Appl. Phys. Lett. 97, No. 5, 054102 (2010).

    Article  CAS  Google Scholar 

  143. F. Zheng, “Model for choosing best alternative to remove space junk,” Proc. 2017 5th Int. Conf. on Frontiers of Manufacturing Science and Measuring Technology (FMSMT 2017) (Atlantis Press, Paris, 2017).

  144. C. A. Luongo, P. J. Masson, T. Nam, D. Mavris, H. D. Kim, G. V. Brown, M. Waters, and D. Hall, “Next generation more-electric aircraft: a potential application for hts superconductors,” IEEE Trans. Appl. Supercond. 19, No. 3, 1055–1068 (2009).

    Article  CAS  Google Scholar 

  145. M. Filipenko, L. Kühn, T. Gleixner, M. Thummet, M. Lessmann, D. Möller, M. Böhm, A. Schröter, K. Häse, J. Grundmann, M. Wilke, M. Frank, P. Hasselt, J. Richter, M. Herranz-Garcia, C. Weidermann, A. Spangolo, and M. Klöpzig, “Concept design of a high power superconducting generator for future hybrid-electric aircraft,” Supercond. Sci. Technol. 33, No. 5, 054002 (2020).

    Article  Google Scholar 

  146. C. Huang, B. Xu, and Y. Zhou, “Strategies to improve the dynamic levitation performance of superconducting maglevs against force decay and disturbance,” J. Appl. Phys. 127, No. 19, 193907 (2020).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Gokhfeld.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokhfeld, D.M., Koblischka, M.R. & Koblischka-Veneva, A. Highly Porous Superconductors: Synthesis, Research, and Prospects. Phys. Metals Metallogr. 121, 936–948 (2020). https://doi.org/10.1134/S0031918X20100051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20100051

Keywords:

Navigation