Skip to main content
Log in

Influence of Vertical Heterogeneity of Atmospheric Temperature on the Propagation of Acoustic-Gravity Waves

  • DYNAMICS AND PHYSICS OF BODIES OF THE SOLAR SYSTEM
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract—

A new approach to the study of acoustic-gravity waves in the Earth’s atmosphere in the presence of vertical temperature inhomogeneity is proposed. Using this approach, the local AGW dispersion equation was obtained for the atmosphere with a small vertical temperature gradient. The modification of the acoustic and gravitational regions of freely propagating AGWs on the spectral plane \(\left( {\omega ,{{k}_{x}}} \right)\) depending on the temperature gradient was investigated. It is shown that the acoustic and gravitational regions approach each other with a positive temperature gradient, while the distance between them increases with a negative gradient. On the spectral plane, the indicators of the location of the acoustic and gravitational regions of freely propagating AGWs are the dispersion curves of the non-divergent and inelastic horizontal wave modes. The possibility of overlapping the acoustic and gravitational regions of AGWs in a nonisothermal atmosphere was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yu. P. Ladikov-Roev, O. K. Cheremnykh, A. K. Fedorenko, and V. E. Nabivach, “Acoustic–gravitational waves in a vortex polar thermosphere,” Probl. Upr. Inf., No. 5, 74–84 (2015).

  2. V. M. Somsikov, Solar Terminator and Atmosphere Dynamics (Nauka, Alma-Ata, 1983) [in Russian].

  3. A. K. Fedorenko and E. I. Kryuchkov, “Distribution of medium-scale acoustic gravity waves in polar regions according to satellite measurement data,” Geomagn. Aeron. (Engl. Transl.) 51, 520–533 (2011).

  4. O. K. Cheremnykh, Yu. A. Selivanov, and I. V. Zakharov, “The influence of compressibility and nonisothermality of the atmosphere on the propagation of acousto–gravity waves,” Kosm. Nauka Tekhnol. 16 (1), 9–19 (2010).

    Article  Google Scholar 

  5. T. Beer, Atmospheric Waves (Wiley, New York, 1974).

    Google Scholar 

  6. A. V. Bespalova, A. K. Fedorenko, O. K. Cheremnykh, and I. T. Zhuk, “Satellite observations of wave disturbances caused by moving solar terminator,” J. Atmos. Sol.-Terr. Phys. 140, 79–85 (2016). https://doi.org/10.1016/j.jastp.2016.02.012

    Article  ADS  Google Scholar 

  7. W. R. Campbell and B. Roberts, “The influence of a chromospheric magnetic field on the solar p- and f‑modes,” Astrophys. J. 338, 538–556 (1989).

    Article  ADS  Google Scholar 

  8. O. K. Cheremnykh, A. K. Fedorenko, E. I. Kryuchkov, and Y. A. Selivanov, “Evanescent acoustic-gravity modes in the isothermal atmosphere: Systematization, applications to the Earth’s and solar atmospheres,” Ann. Geophys. 37, 405–415 (2019).

    Article  ADS  Google Scholar 

  9. F. Einaudi and C. O. Hines, “WKB approximation in application to acoustic–gravity waves,” Can. J. Phys. 48, 1458–1471 (1970). https://doi.org/10.1139/p70-185

    Article  ADS  MathSciNet  Google Scholar 

  10. J. M. Forbes and Y. Moudden, “Solar terminator wave in a Mars general circulation model,” Geophys. Res. Lett. 36, 17201 (2009).

    Article  ADS  Google Scholar 

  11. S. H. Francis, “Global propagation of atmospheric gravity waves: A review,” J. Atmos. Terr. Phys. 37, 1011–1054 (1975).

    Article  ADS  Google Scholar 

  12. V. G. Galushko, V. V. Paznukhov, Y. M. Yampolski, and J. C. Föster, “Incoherent scatter radar observations of AGW/TID events generated by the moving solar terminator,” Ann. Geophys. 16, 821–827 (1998).

    Article  ADS  Google Scholar 

  13. L. A. Hajkovicz, “Auroral electrojet effect on the global occurrence pattern of large scale travelling ionospheric disturbances,” Planet. Space. Sci. 39, 1189–1196 (1991).

    Article  ADS  Google Scholar 

  14. C. O. Hines, “Internal gravity waves at ionospheric heights,” Can. J. Phys. 38, 1441–1481 (1960).

    Article  ADS  Google Scholar 

  15. K. Hocke and K. Schlegel, “A review of atmospheric gravity waves and traveling ionospheric disturbances: 1982–1995,” Ann. Geophys. 14, 917–940 (1996).

    ADS  Google Scholar 

  16. K. M. Huang, S. D. Zhang, F. Yi, C. M. Huang, Q. Gan, Y. Gong, and Y. H. Zhang, “Nonlinear interaction of gravity waves in a nonisothermal and dissipative atmosphere,” Ann. Geophys. 32, 263–275 (2014). https://doi.org/10.5194/angeo-32-263-2014

    Article  ADS  Google Scholar 

  17. T. D. Kaladze, O. A. Pokhotelov, H. A. Shah, M. I. Khan, and L. Stenflo, “Acoustic–gravity waves in the Earth’s ionosphere,” J. Atmos. Sol.-Terr. Phys. 70, 1607–1616 (2008).

    Article  ADS  Google Scholar 

  18. A. J. Miles and B. Roberts, “Magnetoacoustic-gravity surface waves,” Sol. Phys. 141, 205–234 (1992).

    Article  ADS  Google Scholar 

  19. A. K. Nekrasov, S. L. Shalimov, P. K. Shukla, and L. Stenflo, “Nonlinear disturbances in the ionosphere due to acoustic gravity waves,” J. Atmos. Terr. Phys. 57, 732–742 (1995).

    ADS  Google Scholar 

  20. Yu. G. Rapoport, O. E. Gotynyan, V. M. Ivchenko, L. V. Kozak, and M. Parrot, “Effect of acoustic–gravity wave of the lithospheric origin on the ionospheric F region before earthquakes,” Phys. Chem. Earth 29, 607–616 (2004).

    Article  ADS  Google Scholar 

  21. C. S. Rosental and D. O. Gough, “The Solar f-mode as interfacial mode at the chromosphere-corona transition,” Astrophys. J. 423, 488–495 (1994).

    Article  ADS  Google Scholar 

  22. P. Sauli and J. Boska, “Tropospheric events and possible related gravity wave activity effects on the ionosphere,” J. Atmos. Solar. Terr. Phys. 63, 945–950 (2001).

    Article  ADS  Google Scholar 

  23. G. Schubert and R. L. Walterscheid, “Propagation of small-scale acoustic–gravity waves in the Venus atmosphere,” J. Atmos. Sci. 41, 1202–1213 (1984).

    Article  ADS  Google Scholar 

  24. L. Stenflo and P. K. Shukla, “Nonlinear acoustic–gravity waves,” J. Plasma Phys. 75, 841–847 (2009). https://doi.org/10.1017/S0022377809007892

    Article  ADS  Google Scholar 

  25. I. Tolstoy, “The theory of waves in stratified fluids including the effects of gravity and rotation,” Rev. Mod. Phys. 35 (1), 207–230 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  26. S. L. Vadas and M. J. Fritts, “Thermospheric responses to gravity waves: Influences of increasing viscosity and thermal diffusivity,” J. Geophys. Res.: Atmos. 110, D15103 (2005). https://doi.org/10.1029/2004JD005574

    Article  ADS  Google Scholar 

  27. R. L. Waltercheid and J. H. Hecht, “A reexamination of evanescent acoustic-gravity waves: Special properties and aeronomical significance,” J. Geophys. Res.: Atmos. 108, 4340 (2005). https://doi.org/10.1029/2002JD002421

    Article  ADS  Google Scholar 

  28. K. S. Yeh and C. H. Liu, “Acoustic-gravity waves in the upper atmosphere,” Rev. Geophys. Space. Phys. 12, 193–216 (1974).

    Article  ADS  Google Scholar 

  29. E. Yiğit, A. D. Aylward, and A. S. Medvedev, “Parameterization of the effects of vertically propagating gravity waves for thermosphere general circulation models: Sensitivity study,” J. Geophys. Res.: Atmos. 113, D19106 (2008). https://doi.org/10.1029/2008JD010135

    Article  ADS  Google Scholar 

  30. S. D. Zhang and F. Yi, “A numerical study of propagation characteristics of gravity wave packets propagating in a dissipative atmosphere,” J. Geophys. Res.: Atmos. 107, ACL 14-1–ACL 14-9 (2002).

Download references

Funding

The study was supported by grant 2020.02/0015 “Theoretical and experimental studies of global perturbations of natural and artifical origin in the Earth-atmosphere-ionosphere system” of National Research Foundation of Ukraine. Rapoport Yu.G. is thankful to the Ministry of Education and Science of Ukraine for the support of the present work by grant 20БФ051-02 “Wave processes and effects in active resonant layered plasma media and metamaterials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Fedorenko.

Additional information

Translated by T. Sokolova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, A.K., Kryuchkov, E.I., Cheremnykh, O.K. et al. Influence of Vertical Heterogeneity of Atmospheric Temperature on the Propagation of Acoustic-Gravity Waves. Kinemat. Phys. Celest. Bodies 36, 253–264 (2020). https://doi.org/10.3103/S0884591320060033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591320060033

Keywords:

Navigation