Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 11, 2020

Modeling of Irreversible Two-Stage Combined Thermal Brownian Refrigerators and Their Optimal Performance

  • Congzheng Qi , Zemin Ding , Lingen Chen EMAIL logo , Yanlin Ge and Huijun Feng

Abstract

This paper establishes a model of an irreversible two-stage combined thermal Brownian refrigerator with an intermediate heat reservoir by combining finite time thermodynamics with non-equilibrium thermodynamics. The model is composed of two irreversible thermal Brownian refrigerators working in series. The combined thermal Brownian refrigerator works among three constant temperature heat reservoirs. There exist finite rate heat transfer processes among heat reservoirs and refrigerators. Considering heat leakage, heat transfer losses, and heat flows via kinetic energy change of particles, expressions of cooling load and the coefficient of performance (COP) are derived. The effects of design parameters on system performance are studied. The optimal performance of the irreversible combined thermal Brownian refrigerator is studied. The cooling load and COP are higher when the temperature of the intermediate heat reservoir is close to that of the bottom heat reservoir. Compared with the single-stage thermal Brownian refrigerator, which works between the heat source and sink with the same temperatures, the cooling load of the combined thermal Brownian refrigerator is greater, whereas the COP is smaller.

Award Identifier / Grant number: 51779262

Award Identifier / Grant number: 51576207

Award Identifier / Grant number: 51306206

Award Identifier / Grant number: 2017CFB498

Funding statement: This paper is supported by the National Natural Science Foundation of China (Project Nos. 51779262, 51576207, and 51306206), the Hubei Provincial Natural Science Foundation of China (Project No. 2017CFB498), and the independent scientific research project of Naval University of Engineering (425317Q016).

Acknowledgment

The authors wish to thank the reviewers for their careful, unbiased and constructive suggestions, which led to this revised manuscript.

References

[1] X. M. Zhang and B. Q. Ai, Transport of overdamped Brownian particles driven by AC forces and time-delayed feedback, J. Phys. A, Math. Theor.43 (2010), no. 49, 495004.10.1088/1751-8113/43/49/495004Search in Google Scholar

[2] M. Asfaw, Thermodynamic feature of a Brownian heat engine operating between two heat baths, Phys. Rev. E89 (2014), no. 1, 012143.10.1103/PhysRevE.89.012143Search in Google Scholar PubMed

[3] J. Spiechowicz, P. Hanggi and J. Luczka, Brownian motors in micro-scale domain: Enhancement of efficiency by noise, Phys. Rev. E90 (2014), no. 3, 032104.10.1103/PhysRevE.90.032104Search in Google Scholar

[4] R. K. Schmitt, J. M. R. Parrondo, H. Linke and J. Johansson, Molecular motor efficiency is maximized in the presence of both power-stroke and rectification, New J. Phys.17 (2015), no. 6, 065011.10.1088/1367-2630/17/6/065011Search in Google Scholar

[5] G. Li and Z. C. Tu, Retainability of canonical distributions for a Brownian particle controlled by a time-dependent harmonic potential, Sci. China, Phys. Mech. Astron.59 (2016), no. 4, 640501.10.1007/s11433-016-5787-7Search in Google Scholar

[6] J. M. Park, J. S. Lee and J. D. Noh, Optimal tuning of a confined Brownian information engine, Phys. Rev. E93 (2016), no. 3, 032146.10.1103/PhysRevE.93.032146Search in Google Scholar PubMed

[7] R. Long, B. D. Li and W. Liu, Performance analysis for Feynman’s ratchet as a refrigerator with heat leak under different figure of merits, Appl. Math. Model.40 (2016), no. 23, 10437–10446.10.1016/j.apm.2016.07.027Search in Google Scholar

[8] E. Açıkkalp, Analysis of a Brownian heat engine with ecological criteria, Eur. Phys. J. Plus131 (2016), no. 12, 426.10.1140/epjp/i2016-16426-6Search in Google Scholar

[9] B. Andresen, P. Salamon and R. S. Berry, Thermodynamics in finite time, Phys. Today37 (1984), no. 9, 62–70.10.1063/1.2916405Search in Google Scholar

[10] A. Bejan, Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes, J. Appl. Phys.79 (1996), no. 3, 1191–1218.10.1063/1.362674Search in Google Scholar

[11] L. G. Chen and F. R. Sun, Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Science Publishers, New York, 2004.Search in Google Scholar

[12] K. H. Hoffmann, J. M. Burzler and S. Schubert, Endoreversible thermodynamics, J. Non-Equilib. Thermodyn.22 (1997), no. 4, 311–355.Search in Google Scholar

[13] R. S. Berry, A. Kazakov V, S. Sieniutycz, Z. Szwast and A. M. Tsirlin, Thermodynamic Optimization of Finite Time Processes, Wiley, Chichester, 1999.Search in Google Scholar

[14] L. G. Chen, C. Wu and F. R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn.24 (1999), no. 4, 327–359.10.1515/JNETDY.1999.020Search in Google Scholar

[15] K. H. Hoffman, J. Burzler, A. Fischer, M. Schaller and S. Schubert, Optimal process paths for endoreversible systems, J. Non-Equilib. Thermodyn.28 (2003), no. 3, 233–268.10.1515/JNETDY.2003.015Search in Google Scholar

[16] L. G. Chen, Finite-Time Thermodynamic Analysis of Irreversible Processes and Cycles, Higher Education Press, Beijing, 2005 (in Chinese).Search in Google Scholar

[17] Y. Qin X, L. G. Chen, Y. L. Ge and F. R. Sun, Finite time thermodynamic studies on absorption thermodynamic cycles: A state of the arts review, Arab. J. Sci. Eng.38 (2013), no. 3, 405–419.10.1007/s13369-012-0449-1Search in Google Scholar

[18] L. G. Chen, H. J. Feng and Z. H. Xie, Generalized thermodynamic optimization for iron and steel production processes: Theoretical exploration and application cases, Entropy18 (2016), no. 10, 353.10.3390/e18100353Search in Google Scholar

[19] B. Andresen, Current trends in finite-time thermodynamics, Angew. Chem., Int. Ed. Engl.50 (2011), no. 12, 2690–2704.10.1002/anie.201001411Search in Google Scholar PubMed

[20] K. H. Hoffmann, B. Andresen and P. Salamon, Finite-time thermodynamics tools to analyze dissipative processes, in: A. R. Dinner (Ed.). Proceedings of the 240 Conference: Science’s Great Challenges, Advances in Chemical Physics, 157, Wiley, (2015), 57–67.10.1002/9781118959602.ch5Search in Google Scholar

[21] Y. L. Ge, L. G. Chen and F. R. Sun, Progress in finite time thermodynamic studies for internal combustion engine cycles, Entropy18 (2016), no. 4, 139.10.3390/e18040139Search in Google Scholar

[22] L. G. Chen and S. J. Xia, Generalized Thermodynamic Dynamic-Optimization for Ireversible Processes, Science Press, Beijing, 2017 (in Chinese).Search in Google Scholar

[23] L. G. Chen and S. J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles – Thermodynamic and Chemical Theoretical Cycles, Science Press, Beijing, 2018 (in Chinese).Search in Google Scholar

[24] L. G. Chen and S. J. Xia, Generalized Thermodynamic Dynamic-Optimization for Irreversible Cycles – Engineering Thermodynamic Plants and Generalized Engine Cycles, Science Press, Beijing, 2018 (in Chinese).Search in Google Scholar

[25] S. C. Kaushik, S. K. Tyagi and P. Kumar, Finite Time Thermodynamics of Power and Refrigeration Cycles, Springer, New York, 2018.10.1007/978-3-319-62812-7Search in Google Scholar

[26] T. N. F. Roach, P. Salamon, J. Nulton, B. Andresen, B. Felts, A. Haas, et al. Application of finite-time and control thermodynamics to biological processes at multiple scales, J. Non-Equilib. Thermodyn. 43 (2018), no. 3, 193–210.10.1515/jnet-2018-0008Search in Google Scholar

[27] S. M. Pourkiaei, M. H. Ahmadi, M. Sadeghzadeh, S. Moosavi, F. Pourfayaz, Chen Lingen, et al., Thermoelectric cooler and thermoelectric generator devices: a review of present and potential applications, modeling and materials, Energy186 (2019), 115849.10.1016/j.energy.2019.07.179Search in Google Scholar

[28] L. G. Chen and J. Li, Thermodynamic Optimization theory for Two-Heat-Reservoir Cycles, Science Press, Beijing, 2020 (in Chinese).Search in Google Scholar

[29] Z. M. Ding, L. G. Chen and W. Liu X, Thermodynamic optimization for irreversible thermal Brownian motors, energy selective electron engines and thermionic devices, Int. J. Ambient Energy (2020), DOI: 10.1080/01430750.2018.1517681, in press.Search in Google Scholar

[30] L. G. Chen, Z. M. Ding and J. L. Zhou, Thermodynamic Optimization for Irreversible Microscopic Energy Conversion Systems, Science Press, Beijing, 2021 (in Chinese).Search in Google Scholar

[31] P. Rastogi and S. P. Mahulikar, Geometry-based entropy generation minimization in laminar internal convective micro-flow, J. Non-Equilib. Thermodyn.44 (2019), no. 1, 81–90.10.1515/jnet-2018-0036Search in Google Scholar

[32] M. Ponmurugan, Attainability of maximum work and the reversible efficiency of minimally nonlinear irreversible heat engines, J. Non-Equilib. Thermodyn.44 (2019), no. 2, 143–153.10.1515/jnet-2018-0009Search in Google Scholar

[33] M. A. Zaeva, A. M. Tsirlin and O. V. Didina, Finite time thermodynamics: Realizability domain of heat to work converters, J. Non-Equilib. Thermodyn.44 (2019), no. 2, 181–191.10.1515/jnet-2018-0007Search in Google Scholar

[34] R. Raman and N. Kumar, Performance analysis of Diesel cycle under efficient power density condition with variable specific heat of working fluid, J. Non-Equilib. Thermodyn.44 (2019), no. 4, 405–416.10.1515/jnet-2019-0020Search in Google Scholar

[35] K. Schwalbe and K. H. Hoffmann, Stochastic Novikov engine with Fourier heat transport, J. Non-Equilib. Thermodyn.44 (2019), no. 4, 417–424.10.1515/jnet-2019-0063Search in Google Scholar

[36] F. Marsik, B. Weigand, M. Tomas, O. Tucek and P. Novotny, On the efficiency of electrochemical devices from the perspective of endoreversible thermodynamics, J. Non-Equilib. Thermodyn.44 (2019), no. 4, 425–438.10.1515/jnet-2018-0076Search in Google Scholar

[37] S.  Yu Boikov, B. Andresen, A. A. Akhremenkov and A. M. Tsirlin, Evaluation of irreversibility and optimal organization of an integrated multi-stream heat exchange system, J. Non-Equilib. Thermodyn.45 (2020), no. 2, 155–171.10.1515/jnet-2019-0078Search in Google Scholar

[38] J. M. R. Parrondo and B. J. de Cisneros, Energetics of Brownian motors: A review, Appl. Phys. A75 (2002), no. 2, 179–191.10.1007/s003390201332Search in Google Scholar

[39] M. Asfaw and M. Bekele, Current, maximum power and optimized efficiency of a Brownian heat engine, Eur. Phys. J. B38 (2004), no. 3, 457–461.10.1140/epjb/e2004-00140-ySearch in Google Scholar

[40] Z. M. Ding, Y. L. Ge, L. G. Chen, H. J. Feng and S. J. Xia, Optimal performance regions of Feynman’s ratchet engine with different optimization criteria, J. Non-Equilib. Thermodyn.45 (2020), no. 2, 191–207.10.1515/jnet-2019-0102Search in Google Scholar

[41] M. Asfaw and M. Bekele, Energetics of a simple microscopic heat engine, Phys. Rev. E72 (2005), no. 5, 056109.10.1103/PhysRevE.72.056109Search in Google Scholar PubMed

[42] M. Asfaw and M. Bekele, Exploring the operation of a tiny heat engine, Physica A384 (2007), no. 2, 346–358.10.1016/j.physa.2007.05.035Search in Google Scholar

[43] M. Asfaw, Effect of thermal inhomogeneity on the performance of a Brownian heat engine, Eur. Phys. J. B86 (2013), no. 4, 189.10.1140/epjb/e2013-40090-7Search in Google Scholar

[44] M. Asfaw, Modeling an efficient Brownian heat engine, Eur. Phys. J. B65 (2008), no. 1, 109–116.10.1140/epjb/e2008-00308-5Search in Google Scholar

[45] Y. P. Zhang, He J. Z. He X and R. L. Xiao, Thermodynamic performance characteristics of a Brownian microscopic heat engine driven by discrete and periodic temperature field, Commun. Theor. Phys.54 (2010), no. 5, 857–862.10.1088/0253-6102/54/5/16Search in Google Scholar

[46] Y. P. Zhang and J. Z. He, Thermodynamic performance characteristics of an irreversible micro-Brownian heat engine driven by temperature difference, Chin. Phys. Lett.27 (2010), no. 9, 090502.10.1088/0256-307X/27/9/090502Search in Google Scholar

[47] B. Q. Ai, H. Z. Xie, D. H. Wen and L. G. Liu, Heat flow and efficiency in a microscopic engine, Eur. Phys. J. B48 (2005), no. 1, 101–106.10.1140/epjb/e2005-00383-0Search in Google Scholar

[48] B. Q. Ai, L. Wang and L. G. Liu, Brownian micro-engines and refrigerators in a spatially periodic temperature field: Heat flow and performances, Phys. Lett. A352 (2006), no. 4/5, 286–290.10.1016/j.physleta.2005.12.010Search in Google Scholar

[49] Y. Zhang, B. H. Lin and J. C. Chen, Performance characteristics of an irreversible thermally driven Brownian microscopic heat engine, Eur. Phys. J. B53 (2006), no. 4, 481–485.10.1140/epjb/e2006-00399-xSearch in Google Scholar

[50] Z. M. Ding, L. G. Chen and F. R. Sun, Power and efficiency performances of a micro thermal Brownian heat engine with and without external forces, Braz. J. Phys.40 (2010), no. 2, 141–149.10.1590/S0103-97332010000200003Search in Google Scholar

[51] T. F. Gao, Y. Zhang and J. C. Chen, The Onsager reciprocity relation and generalized efficiency of a thermal Brownian motor, Chin. Phys. B18 (2009), no. 8, 3279–3286.10.1088/1674-1056/18/8/031Search in Google Scholar

[52] T. F. Gao and J. C. Chen, Non-equilibrium thermodynamic analysis on the performance of an irreversible thermally driven Brownian motor, Mod. Phys. Lett. B24 (2010), no. 3, 325–333.10.1142/S0217984910022408Search in Google Scholar

[53] C. Van den Broeck and R. Kawai, Brownian refrigerator, Phys. Rev. Lett.96 (2006), no. 21, 210601.10.1103/PhysRevLett.96.210601Search in Google Scholar PubMed

[54] N. Nakagawa and T. S. Komatsu, A heat pump at a molecular scale controlled by a mechanical force, Europhys. Lett.75 (2006), no. 1, 22–28.10.1209/epl/i2006-10080-2Search in Google Scholar

[55] M. van den Broek and C. Van den Broeck, Chiral Brownian heat pump, Phys. Rev. Lett.100 (2008), no. 13, 130601.10.1103/PhysRevLett.100.130601Search in Google Scholar

[56] Z. M. Ding, L. G. Chen and F. R. Sun, Generalized model and optimum performance of an irreversible thermal Brownian microscopic heat pump, Math. Comput. Model.53 (2011), no. 5/6, 780–792.10.1016/j.mcm.2010.10.015Search in Google Scholar

[57] Y. P. Zhang, J. Z. He, H. Ouyang and Q. Xiao X, Performance characteristics of a micro-Brownian refrigerator in a one-dimensional lattice, Phys. Scr.82 (2010), no. 5, 055005.10.1088/0031-8949/82/05/055005Search in Google Scholar

[58] G. Luo X, N. Liu and J. Z. He, Optimum analysis of a Brownian refrigerator, Phys. Rev. E87 (2013), no. 2, 022139.10.1103/PhysRevE.87.022139Search in Google Scholar

[59] L. G. Chen, Z. M. Ding and F. R. Sun, A generalized model of an irreversible thermal Brownian refrigerator and its performance, Appl. Math. Model.35 (2011), no. 6, 2945–2958.10.1016/j.apm.2010.12.008Search in Google Scholar

[60] Z. M. Ding, L. G. Chen, Y. L. Ge and F. R. Sun, Linear irreversible thermodynamic performance analyses for a generalized irreversible thermal Brownian refrigerator, Int. J. Energy Environ.6 (2015), no. 2, 143–152.Search in Google Scholar

[61] J. C. Chen and Z. J. Yan, Optimal performance of an endoreversible-combined refrigeration cycle, J. Appl. Phys.63 (1988), no. 10, 4795.10.1063/1.340470Search in Google Scholar

[62] L. G. Chen, F. R. Sun and W. Z. Chen Optimization of the specific rate of refrigeration in combined refrigeration cycles, Energy20 (1995), no. 10, 1049–1053.10.1016/0360-5442(95)00051-HSearch in Google Scholar

[63] L. G. Chen, C. Wu and F. R. Sun, Steady flow combined refrigeration cycle performance with heat leak, Appl. Therm. Eng.17 (1997), no. 7, 639–645.10.1016/S1359-4311(96)00089-0Search in Google Scholar

[64] L. G. Chen, Y. H. Bi, F. R. Sun and C. Wu, A generalized model of a combined refrigeration cycle and its performance, Int. J. Therm. Sci.38 (1999), no. 8, 712–718.10.1016/S1290-0729(99)80064-7Search in Google Scholar

[65] M. H. Rubin and B. Andresen, Optimal staging of endoreversible heat engines, J. Appl. Phys.53 (1982), no. 1, 1–7.10.1063/1.331592Search in Google Scholar

[66] Z. W. Meng, L. G. Chen and F. Wu, Optimal power and efficiency of multi-stage endoreversible quantum Carnot heat engine with Harmonic oscillators at the classical limit, Entropy22 (2020), no. 3, 457.10.3390/e22040457Search in Google Scholar PubMed PubMed Central

[67] P. Meurs and C. Van den Broeck, Thermal Brownian motor, J. Phys. Condens. Matter17 (2005), no. 47, S3673–S3684.10.1088/0953-8984/17/47/002Search in Google Scholar PubMed

Received: 2020-07-26
Revised: 2020-10-13
Accepted: 2020-11-20
Published Online: 2020-12-11
Published in Print: 2021-04-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/jnet-2020-0084/html
Scroll to top button