Skip to main content
Log in

Computer modeling for the study of (n, p) and (n, α) modifications in AlN nanoparticles

  • Original Paper
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The present study is devoted to an investigation of the (n, p) and the (n, α) modifications created by neutrons in AlN nanoparticles at different energies using computer modeling. The possible modifications under the influence of neutrons have been separately studied for the Al and the N atoms that forming AlN nanoparticles. Because the effective cross sections of the probable modifications are different in the various types of aluminum and nitrogen atoms, the modeling was performed separately for each stable isotope. The effective cross section spectra for the (n, p) and (n, α) modifications for the Al and the N atoms were mutually studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D.H.A. Besisa, E.M.M. Ewais et al., Renew. Energy 129, 201 (2018)

    Article  Google Scholar 

  2. L.A.F. Peçanha Jr., S.N. Monteiro et al., J. Mater. Res. Technol. 7(4), 550 (2018)

    Article  Google Scholar 

  3. B.R. Lee, T.H. Lee, K.-R. Son, T.G. Kim, J. Alloys Compd. 741, 21 (2018)

    Article  Google Scholar 

  4. M. Gillinger, T. Knobloch et al., Mater. Sci. Semicond. Process. 81, 1 (2018)

    Article  Google Scholar 

  5. R. Yogi, N.K. Jaiswal, Phys. Lett. A 383(6), 532 (2019)

    Article  ADS  Google Scholar 

  6. Z. Li, B. Peng et al., J. Eur. Ceram. Soc. 39(14), 4194 (2019)

    Article  Google Scholar 

  7. M. Beshkova, R. Yakimova, Vacuum 176, 109231 (2020)

    Article  ADS  Google Scholar 

  8. R. Lingaparthi, N. Dharmarasu et al., Thin Solid Films 708, 138128 (2020)

    Article  ADS  Google Scholar 

  9. K. Dukenbayev, A. Kozlovskiy et al., Vacuum 159, 144 (2019)

    Article  ADS  Google Scholar 

  10. T. Gladkikh, A. Kozlovskiy et al., Mater. Charact. 150, 88 (2019)

    Article  Google Scholar 

  11. A.L. Kozlovskiy, D.I. Shlimas et al., Solid State Sci. 107, 106367 (2020)

    Article  Google Scholar 

  12. H. Jiang, X.-H. Wang et al., Ceram. Int. 45(10), 13019 (2019)

    Article  Google Scholar 

  13. A. Domanowska, R. Korbutowicz, H. Teterycz, Appl. Surf. Sci. 484, 1234 (2019)

    Article  ADS  Google Scholar 

  14. Z. Liu, M. Shen et al., Corros. Sci. 156, 71 (2019)

    Article  Google Scholar 

  15. A.J. Koning, D. Rochman, Nucl. Data Sheets 113, 2841 (2012)

    Article  ADS  Google Scholar 

  16. E. Arthur, P. Young, G. Hale, ENDF/B-VIII.0, LANL (2018)

  17. M. B. Chadwick, P. G. Young, D. Hetrick, ENDF/B-VIII.0, LANL (2011)

  18. E.M. Huseynov, T.G. Naghiyev, U.S. Aliyeva, Phys. B Condens. Matt. 577, 411788 (2020)

    Article  Google Scholar 

  19. E.M. Huseynov, Ceram. Int. 46(5), 5645 (2020)

    Article  Google Scholar 

  20. E. Huseynov, A. Jazbec, L. Snoj, Appl. Phys. A 125, 91 (2019)

    Article  Google Scholar 

  21. E. Huseynov, A. Jazbec, Silicon 11(4), 1801 (2019)

    Article  Google Scholar 

  22. E.M. Huseynov, T.G. Naghiyev, N.R. Abbasov, Adv. Phys. Res. 1(1), 42 (2019)

    Google Scholar 

  23. E.M. Huseynov, Appl. Phys. A 124, 19 (2018)

    Article  ADS  Google Scholar 

  24. M. Elchin, Huseynov 13(3), 1830002 (2018)

    Google Scholar 

  25. E.M. Huseynov, Solid State Sci. 84, 44 (2018)

    Article  ADS  Google Scholar 

  26. E.M. Huseynov, Phys. B Condens. Matt. 544, 23 (2018)

    Article  ADS  Google Scholar 

  27. E.M. Huseynov, Silicon 10(3), 995 (2018)

    Article  Google Scholar 

  28. E. Huseynov, A. Jazbec, Phys B Condens. Matt. 517, 30 (2017)

    Article  ADS  Google Scholar 

  29. E.M. Huseynov, NANO 12(6), 1750068 (2017)

    Article  MathSciNet  Google Scholar 

  30. E. Huseynov et al., Mod. Phys. Lett. B 30(8), 1650115 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. E. Huseynov, A. Garibov, Silicon 9(5), 753 (2017)

    Article  Google Scholar 

  32. R.-K. Dong, Z. Mei et al., Int. J. Hydro. Energy 44(36), 19474 (2019)

    Article  Google Scholar 

  33. X. Guo, Y. Tang et al., J. Environ. Manag. 274, 111197 (2020)

    Article  Google Scholar 

  34. C. Yin, H. Yang et al., Agric. Ecosyst. Environ. 303, 107089 (2020)

    Article  Google Scholar 

  35. Y. Zhuo, W. Zeng, Sci. Total Environ. 741, 140191 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Foundation for the Development of Science under the President of the Republic of Azerbaijan, project no. EIF-BGM-3-BRFTF-2+/2017 15/01/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Naghiyev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghiyev, T.G. Computer modeling for the study of (n, p) and (n, α) modifications in AlN nanoparticles. J. Korean Phys. Soc. 78, 232–235 (2021). https://doi.org/10.1007/s40042-020-00007-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-020-00007-9

Keywords

Navigation